143 resultados para Iron Age Iberia
Composition of melt inclusions and age of zircons of plagiogneisses from the Kola Superdeep Borehole
Resumo:
A comprehensive study of melt inclusions and SHRIMP dating of zircons from trondhjemite gneisses of the sequence VIII from the Kola Superdeep Borehole has revealed presence of old primary magmatic crystals with age up to 2887+/-15 Ma. This is not consistent with the previous view, according to which the oldest zircons from the Archean Complex in SG-3 are products of granulite metamorphism. Primary magmatic zircons of early generation (from 2887 to 2842 Ma) formed in deep-seated magma chambers during partial crystallization of CO2-saturated trondhjemite estimates on duration of generation of tonalite-trondhjemite-granite melts through partial melting of mafic rocks.
Resumo:
Accurate age models are a tool of utmost important in paleoclimatology. Constraining the rate and pace of past climate change are at the core of paleoclimate research, as such knowledge is crucial to our understanding of the climate system. Indeed, it allows for the disentanglement of the various drivers of climate change. The scarcity of highly resolved sedimentary records from the middle Eocene (Bartonian - Lutetian Stages; 47.8 - 37.8 Ma) has led to the existence of the "Eocene astronomical time scale gap" and hindered the establishment of a comprehensive astronomical time scale (ATS) for the entire Cenozoic. Sediments from the Newfoundland Ridge drilled during Integrated Ocean Drilling Program (IODP) Expedition 342 span the Eocene gap at an unprecedented stratigraphic resolution with carbonate bearing sediments. Moreover, these sediments exhibit cyclic lithological changes that allow for an astronomical calibration of geologic time. In this study, we use the dominant obliquity imprint in XRF-derived calcium-iron ratio series (Ca/Fe) from three sites drilled during IODP Expedition 342 (U1408, U1409, U1410) to construct a floating astrochronology. We then anchor this chronology to numerical geological time by tuning 173-kyr cycles in the amplitude modulation pattern of obliquity to an astronomical solution. This study is one of the first to use the 173-kyr obliquity amplitude cycle for astrochronologic purposes, as previous studies primarily use the 405-kyr long eccentricity cycle as a tuning target to calibrate the Paleogene geologic time scale. We demonstrate that the 173-kyr cycles in obliquity's amplitude are stable between 40 and 50 Ma, which means that one can use the 173-kyr cycle for astrochronologic calibration in the Eocene. Our tuning provides new age estimates for magnetochron reversals C18n.1n - C21r and a stratigraphic framework for key sites from Expedition 342 for the Eocene. Some disagreements emerge when we compare our tuning for the interval between C19r and C20r with previous tuning attempts from the South Atlantic. We therefore present a revision of the original astronomical interpretations for the latter records, so that the various astrochronologic age models for the middle Eocene in the North- and South-Atlantic are consistent.
Resumo:
Various biomarkers (n-alkanes, n-alcohols, and sterols) have been studied in a piston core TSP-2PC taken from the Southern Ocean to reconstruct the paleoenvironmental changes in the subantarctic region for the last two deglaciations. Mass accumulation rates of terrestrial (higher molecular weight n-alkanes and n-alcohols) and marine (dinosterol and brassicasterol) biomarkers increased significantly at the last two glacials and stayed low during interglacial peaks (early Holocene and the Eemian). These records indicate that the enhanced atmospheric transport of continental materials and the increased marine biological productivity were synchronously linked in the Southern Ocean at the last two glacials. This suggests that increased glacial dust inputs have relieved iron limitation in the subantarctic Southern Ocean. These two processes, however, were not linked at the cooling phase from the Eemian to marine isotope stage (MIS) 5d. During this period, paleoproductivity may have been influenced by the latitudinal migration of the high-production zone associated with the Antarctic Polar Front.
Resumo:
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
Resumo:
Large variations exist between published mid-Cretaceous (late Barremian to early Turonian stages) seawater Sr-isotope stratigraphies; this has resulted in disparate interpretations of crustal production rates. We report on a detailed investigation of seawater Sr-isotope stratigraphy based on foraminifers and, where available, on inoceramid bivalves from 12 mid-Cretaceous Deep Sea Drilling Project and Ocean Drilling Program sections. The effects of diagenesis are assessed using scanning electron microscope observations and trace-elemental analyses, but are best distinguished by comparing the 87Sr/86Sr values of similar-age samples from different sites. Strontium-isotope analyses compiled from 9 of 12 sites that have detailed age control define one band of common values. This band is used as a composite curve, which presumably represents seawater 87Sr/86Sr values. The composite curve shows a "trough" of markedly lower 87Sr/86Sr values in the Aptian and early Albian stages, higher but constant values for the middle Albian-Cenomanian stages, followed by a decrease in 87Sr/86Sr values in the early Turonian. Variations between published mid-Cretaceous Sr-isotope records result from diagenetic alteration, analytical problems, and the diverse biostratigraphic approaches and assumptions used to estimate sample ages. When preexisting age data are made consistent, the composite record shows close similarities with data sets derived from measurements of macrofossils in land sections of Europe and North America. The interval of decreased 87Sr/86Sr values in the Aptian-Albian stages overlaps with the pulse of mid-plate volcanic activity that produced the Ontong Java, Manihiki, and Kerguelen Plateaus. The exact age and the shape of the trough, however, are consistent with increased spreading rates at oceanic ridges, given the existing data on the timing of mid-plate volcanic activity.
Resumo:
The distribution of redox-sensitive metals in sediments is potentially a proxy for past ocean ventilation and productivity, but deconvolving these two major controls has proved difficult to date. Here we present a 740 kyr long record of trace element concentrations from an archived sediment core collected at ~15°S on the western flank of the East Pacific Rise (EPR) on 1.1 Myr old crust and underlying the largest known hydrothermal plume in the world ocean. The downcore trace element distribution is controlled by a variable diagenetic overprint of the inferred primary hydrothermal plume input. Two main diagenetic processes are operating at this site: redox cycling of transition metals and ferrihydrite to goethite transition during aging. The depth of oxidation in these sediments is controlled by fluctuations in the relative balance of bottom water oxygen and electron donor input (organic matter and hydrothermal sulfides). These fluctuations induce apparent variations in the accumulation of redox-sensitive species with time. Subsurface U and P peaks in glacial age sediments, in this and other published data sets along the southern EPR, indicate that basin-wide changes in deep ocean ventilation, in particular at glacial-interglacial terminations II, III, IV, and V, alter the depth of the oxidation front in the sediments. These basin-wide changes in the deep Pacific have significant implications for carbon partitioning in the ocean-atmosphere system, and the distribution of redox-sensitive metals in ridge crest sediment can be used to reconstruct past ocean conditions at abyssal depths in the absence of alternative proxy records.
Resumo:
Hole 887B of the Ocean Drilling Program (ODP) comprises a 44 m (750 kyr) long continuous section recovered from the Patton-Murray Rise, an elevated plateau that is largely isolated from turbidite deposition. The Patton-Murray area is centered under the Alaska Gyre, a region characterized by the domal upwelling of nutrient-rich waters. Marked increases in productivity and rapid settling of biogenic matter are suggested throughout the section by the episodic accumulation of diatomaceous oozes up to ~1 m thick that are accompanied by barium enrichments. Significant delta13Corg maxima in the major diatomaceous bands suggest that mixedlayer [CO2(aq)] may have been drawn down significantly during some of the productivity events. The episodes of enhanced productivity at Site 887 occur synchronously with short-lived minima in planktonic foram delta18O, suggesting a direct link to low salinity, or less likely, warming, events in the Gulf of Alaska. There is no obvious explanation for the events, but they may be related to seasonal incursions of meltwater from Alaska. We speculate that episodic input of meltwater- or dust-borne iron from Asian or Alaskan sources may have promoted the extraordinary diatom production events recorded in the sedimentary record.
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.