191 resultados para Intervals of singularity
Resumo:
Glauconite is generally agreed to be a reliable indicator of low sedimentation rate, but little systematic work has been done to specify the role of glauconite in a sequence-stratigraphic framework. Ocean Drilling Program Leg 174A recovered a good record of late Tertiary sediments along the shelf edge of the New Jersey US Atlantic margin, and glauconite was present in many intervals of the cores, sometimes in vertical proximity to sequence boundaries. Leg 174A glauconite was analyzed with binocular microscope, XRD and SEM to determine the percent of potassium and degree of maturity in order to relate occurrence to depositional environment. Seismic data were used to locate sequence boundaries, and percent glauconite was visually estimated. Glauconite samples from Site 1073 were found to have formed within a lowstand systems tract (LST), and as part of a distal condensed section (CS) within a transgressive systems tract (TST). These results are comparable to those from nearby Site 903 of Leg 150, which indicate a similar depositional setting for glauconite. Glauconites at shelf Sites 1071 and 1072 likely formed in the TST as well. Onshore, glauconite occurs mainly in transgressive systems tracts. The Miocene appears to be the upper limit of glauconite formation onshore. As the magnitude of sea-level change decreased, present onshore locations became too nearshore to maintain sediment-free environments, and the zone of glauconite deposition moved seaward. The same process did not occur offshore until the Plio-Pleistocene. Low subsidence-rate margins such as the US Atlantic are subject more to the variations of sea-level than to changes in sediment supply, tectonics, or other factors influencing their depositional patterns. Although glauconite occurrence is widespread in the stratigraphic record, this study demonstrates that for low subsidence-rate margins, primary deposition of glauconite is largely restricted to the TST.
Resumo:
Reconstructing the long-term evolution of organic sedimentation in the eastern Equatorial Atlantic (ODP Leg 159) provides information about the history of the climate/ocean system, sediment accumulation, and deposition of hydrocarbon-prone rocks. The recovery of a continuous, 1200 m long sequence at ODP Site 959 covering sediments from Albian (?) to the present day (about 120 Ma) makes this position a key location to study these aspects in a tropical oceanic setting. New high resolution carbon and pyrolysis records identify three main periods of enhanced organic carbon accumulation in the eastern tropical Atlantic, i.e. the late Cretaceous, the Eocene-Oligocene, and the Pliocene-Pleistocene. Formation of Upper Cretaceous black shales off West Africa was closely related to the tectonosedimentary evolution of the semi-isolated Deep Ivorian Basin north of the Côte d'Ivoire-Ghana Transform Margin. Their deposition was confined to certain intervals of the last two Cretaceous anoxic events, the early Turonian OAE2 and the Coniacian-Santonian OAE3. Organic geochemical characteristics of laminated Coniacian-Santonian shales reveal peak organic carbon concentrations of up to 17% and kerogen type I/II organic matter, which qualify them as excellent hydrocarbon source rocks, similar to those reported from other marginal and deep sea basins. A middle to late Eocene high productivity period occurred off equatorial West Africa. Porcellanites deposited during that interval show enhanced total organic carbon (TOC) accumulation and a good hydrocarbon potential associated with oil-prone kerogen. Deposition of these TOC-rich beds was likely related to a reversal in the deep-water circulation in the adjacent Sierra Leone Basin. Accordingly, outflow of old deep waters of Southern Ocean origin from the Sierra Leone Basin into the northern Gulf of Guinea favored upwelling of nutrient-enriched waters and simultaneously enhanced the preservation potential of sedimentary organic matter along the West African continental margin. A pronounced cyclicity in the carbon record of Oligocene-lower Miocene diatomite-chalk interbeds indicates orbital forcing of paleoceanographic conditions in the eastern Equatorial Atlantic since the Oligocene-Miocene transition. A similar control may date back to the early Oligocene but has to be confirmed by further studies. Latest Miocene-early Pliocene organic carbon deposition was closely linked to the evolution of the African trade winds, continental upwelling in the eastern Equatorial Atlantic, ocean chemistry and eustatic sea level fluctuations. Reduction in carbonate carbon preservation associated with enhanced carbon dissolution is recorded in the uppermost Miocene (5.82-5.2 Ma) section and suggests that the latest Miocene carbon record of Site 959 documents the influence of corrosive deep waters which formed in response to the Messinian Salinity Crisis. Furthermore, sea level-related displacement of higher productive areas towards the West African shelf edge is indicated at 5.65, 5.6, 5.55, 5.2, 4.8 Ma. In view of humid conditions in tropical Africa and a strong West African monsoonal system around the Miocene-Pliocene transition, the onset of pronounced TOC cycles at about 5.6 Ma marks the first establishment of upwelling cycles in the northern Gulf of Guinea. An amplification in organic carbon deposition at 3.3 Ma and 2.45 Ma links organic sedimentation in the tropical eastern Equatorial Atlantic to the main steps of northern hemisphere glaciation and testifies to the late Pliocene transition from humid to arid conditions in central and western African climate. Aridification of central Africa around 2.8 Ma is not clearly recorded at Site 959. However, decreased and highly fluctuating carbonate carbon concentrations are observed from 2.85 Ma on that may relate to enhanced terrigenous (eolian) dilution from Africa.
Resumo:
The Cenozoic Victoria Land Basin (VLB) stratigraphic section penetrated by CRP-3 is mostly of Early Oligocene age. It contains an array of lithofacies comprising fine-grained mudrocks, interlaminated and interbedded mudrocks/sandstones, mud-rich and mud-poor sandstones, conglomerates and diamctites that are together interpreted as the products of shallow marine to possibly non-marine environments of deposition, affected by the periodic advance and retreat of tidewater glaciers. This lithofacies assemblage can be readily rationalised using the facies scheme designed originally for CRP-2/2A, and published previously. The uppermost 330 metres below sea floor (mbsf) shows a cyclical arrangement of lithofacies also similar to that recognised throughout CRP-2/2A, and interpreted to reflect cyclical variations in relative sea-level driven by ice volume fluctuations ('Motif A'). Between 330 and 480 mbsf, a series of less clearly cyclical units, generally fining-upward but nonetheless incorporating a significant subset of the facies assemblage, has been identified and noted in the Initial Report as 'Motif B' Below 480 mbsf, the section is arranged into a repetitive succession of fining-upward units, each of which comprises dolerite clast conglomerate at the base passing upward into relatively thick intervals of sandstones. The cycles present down 480 mbsf are defined as sequences, each interpreted to record cyclical variation of relative sea-level. The thickness distribution of sequences in CRP-3 provides some insights into the geological variables controlling sediment accumulation in the Early Oligocene section. The uppermost part of the section in CRP-3 comprises two or three thick, complete sequences that show a broadly symmetrical arrangement of lithofacies (similar to Sequences 9-11 in CRP-2/2A). This suggests a period of relatively rapid tectonic subsidence, which allowed preservation of the complete facies cycle. Below Sequence 3, however, is a considerable interval of thin, incomplete and erosionally truncated sequences (4-23), which incorporates both the remainder of Motif A sequences and all Motif B sequences recognised. The thinner and more truncated sequences suggest sediment accumulation under conditions of reduced accommodation, and given the lack of evidence for glacial conditions (see Powell et al., this volume) tends to argue for a period of reduced tectonic subsidence. The section below 480 mbsf consists of a series of fining-upward, conglomerate to sandstone intervals which cannot be readily interpreted in terms of relative sea-level change. A relatively mudrock-rich interval above the basal conglomerate/breccia (782-762 mbsf) may record initial flooding of the basin during early rift subsidence. The lithostratigraphy summarised above has been linked to seismic reflection data using depth conversion techniques (Henrys et al., this volume). The three uppermost reflectors ('o', 'p' and 'q') correlate to the package of thick sequences 1-3, and several deeper reflectors can also be correlated to sequence boundaries. The package of thick Sequences 1-3 shows a sheet-like cross-sectional geometry on seismic reflection lines, unlike the similar package recognised in CRP-2/2A.
Resumo:
The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-l.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.
Resumo:
Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated
Resumo:
Two planktonic foraminiferal oxygen isotope records of ODP Hole 653A (Tyrrhenian Sea) are presented for the time period extending from approximately 0.8 to 3.0 Ma. Six, generally accepted, synchronous bioevents were used to precise the oxygen isotope chronology and to identify the oxygen isotope stages 22 down to 114. Subsequently, this oxygen isotope chronology was used to determine the synchronism or diachronism of various other biostratigraphic events with those recorded in the Singa and Ficarazzi land sections (Italy) and those in other DSDP/ODP sites. New results concern the diachronity of the FOD of the planktonic foraminiferal species N. atlantica, G.truncatulinoides truncatulinoides and G. inflata between ODP Hole 653A and the Italian landsections. Because many species entered the Mediterranean in short term fluxes, strongly related to the southward migration of cool North Atlantic surface waters, their time distribution through the Pliocene-Pleistocene generally corresponds to alternated intervals of presence and absence. This should explain most of the apparently diachronous appearances and disappearances. Alternating presence-absence patterns are of less importance for the various nannofossil events. The LOD of D. surculus occurs during the transition of stage 100 to 101 in both ODP Hole 653A and the Singa section, which is in perfect agreement with the disappearance of this species from the open ocean. The LOD of D. pentaradiatus in the Mediterranean occurs in stages 100-99, which seems to be consistent with the extinction of this species in the southern Hemisphere. G. oceanica, which corresponds to the 4 µm < Gephyrocapsa spp <5.5 µm is recorded in stages 65 to 64 at ODP Hole 653A. The Gephyrocapsa spp. >5.5 µm first occurred in stage 51 at Hole 653A, which fits within the uncertainty interval for this event stretching from stage 51 to 47 in the open ocean and seems therefore a useful tool for conventional biostratigraphy in the Mediterranean.
Resumo:
Twenty ice cores drilled in medium to high accumulation areas of the Greenland ice sheet have been used to extract seasonally resolved stable isotope records. Relationships between the seasonal stable isotope data and Greenland and Icelandic temperatures as well as atmospheric flow are investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The linear correlation between the first principal component of the winter season stable isotope data and Greenland winter temperatures is 0.71 for seasonally resolved data and 0.83 for decadally filtered data. The summer season stable isotope data display higher correlations with Stykkisholmur summer temperatures and North Atlantic SST conditions than with SW Greenland temperatures. The linear correlation between Stykkisholmur summer temperatures and the first principal component of the summer season stable isotope data is 0.56, increasing to 0.66 for decadally filtered data. Winter season stable isotope data from ice core records that reach more than 1400 years back in time suggest that the warm period that began in the 1920s raised southern Greenland temperatures to the same level as those that prevailed during the warmest intervals of the Medieval Warm Period some 900-1300 years ago. This observation is supported by a southern Greenland ice core borehole temperature inversion. As Greenland borehole temperature inversions are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales.
Resumo:
The kind, sedimentation rate, and diagenesis of organic particles delivered to the North Atlantic seafloor during the Middle Jurassic-Early Cretaceous were responsible for the presence of carbonaceous sediments in Hole 534A. Organic-rich black clays formed from the rapid supply of organic matter; this organic matter was composed of either abundant, well-preserved, and poorly sorted particles of land plants deposited in clays and silty clays within terrigenous turbiditic sequences (tracheal facies) or abundant amorphous debris (xenomorphic facies) generated through the digestive tracts of marine zooplankton and sedimented as fecal pellets. Evidence for the fecal-pellet origin of xenomorphic debris is illustrated. Black clays were also produced in sediments containing less organic matter as a result of the black color of carbonized particles composing all or most of the residues (micrinitic facies). Slowly sedimented hematitic Aptian clays contain very little carbonized, organic debris that survived diagenetic oxidation. In the red calcareous clay sequence of the Late Jurassic, larger amounts of this oxidized debris turned several clay layers black or blackish red. Carbonized debris also dominates the residues recovered in interbedded black and green Albian clays. Carbonization of organic matter in these sediments either turned them black or provided the diagenetic environment for reduced iron. Carbonized debris is also appreciable in burrow-mottled black-green Kimmeridgian clay. The study of Hole 534A organic matter indicates that during the middle Callovian there was a rapid supply of terrigenous organic matter, followed by a late Callovian episode of rapidly supplied xenomorphic debris deposited as fecal pellets. The Late Jurassic-Berriasian was a time of slower sedimentation of organic matter, primarily of a marine dinoflagellate flora in a poorly preserved xenomorphic facies variously affected by diagenetic oxidation. Several intervals of carbonized tracheal tissue in the Oxfordian and Kimmeridgian suggest episodes of oxidized terrigenous matter. The same sequence of Callovian organic events is evident in much of the Early Cretaceous
Resumo:
Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.
Resumo:
Quantitative analyses of selected calcareous nannofossils in deep-sea sections recovered from the paleo-equatorial Pacific (ODP Leg 199) provide new information about biostratigraphy, biochronology and the evolutionary history of calcareous nannofossils across the Paleocene/Eocene transition interval. The sediment cores from ODP Leg 199 represent the first continuous Paleocene/Eocene boundary sections ever to be sampled in the central equatorial Pacific Ocean. Calcareous nannofossil assemblages are studied to document the distribution of biostratigraphically useful taxa such as Ericsonia, Discoaster, Fasciculithus, Rhomboaster and Tribrachiatus. Focus is given to the evolution of the Rhomboaster-Tribrachiatus lineage in the lower Eocene interval at Site 1215, and on the stratigraphic relationship of these taxa relative to species in the genus Fasciculithus. Critical intervals of North Atlantic DSDP Site 550 have also been re-examined. The Tribrachiatus digitalis morphotype was described at Site 550 from an interval affected by down-hole contamination, partly originating from within the Tribrachiatus orthostylus range. The T. digitalis morphotype represents an evolutionary transitional form between T. contortus and T. orthostylus, entering the stratigraphic record within the range of the former species and disappearing within the lower part of the range of the latter species. The subzonal subdivision of Zone NP10 hence collapses. Lithological and colour variability reflecting orbital cyclicity occur in the lower Eocene of Site 1215, permitting a relative astronomical age calibration of the Tribrachiatus taxa. The distinct Rhomboaster spp.-Discoaster araneus association also occurs in the paleo-equatorial Pacific Ocean, together with a marked decrease in diversity of Fasciculithus spp. Site 1220 reveals a short peak abundance of Thoracosphaera spp. just above the P/E boundary interval, which probably reflects a stressed surface water environment.
Resumo:
The calcite compensation depth (CCD) fluctuates as a result of changes in the water-mass system, thereby producing a distinct dissolution pattern. Differential dissolution changes the composition of the foraminiferal assemblages, reflecting the depositional environment in respect to the fluctuating CCD. The dissolution pattern for the comparatively shallow Site 541 on the Barbados Ridge indicates a depositional environment mostly above the CCD, but below the foraminiferal lysocline during the late Miocene to early Pleistocene. In contrast, sediments of the deeper-water Site 543 indicate a depositional environment above the CCD during the late Pliocene to early Pleistocene only. Furthermore, similarities in the dissolution pattern of corresponding time intervals of Site 541 (represented by superimposed faulted intervals termed Tectonic Units A and B) are recognizable. Sediments deposited clearly above the foraminiferal lysocline are rare
Resumo:
Late Cretaceous (100-73 Ma) pelagic limestones were measured for helium concentration and isotopic composition to characterize the interplanetary dust flux using 3He as a tracer. In the Bottaccione section near Gubbio, Italy, three intervals of elevated 3He concentration were detected: K1 in the Campanian stage at ~79 Ma, K2 in the Santonian stage at ~ 85 Ma, and K3 in the Turonian stage at ~91 Ma. All three of these episodes are associated with high 3He/4He and 3He/non-carbonate ratios, consistent with their derivation from an enhanced extraterrestrial 3He flux rather than decreased carbonate sedimentation or dissolution. While K2 is modest in magnitude and duration and thus is of limited significance, K1 and K3 are each identified by a few myr interval with an ~4-fold enhancement in mean 3He flux compared with pre-event levels. Samples from ODP Hole 762C in the Indian Ocean spanning both K2 and K3 (93-83 Ma) confirm the presence of a peak in the Turonian stage, suggesting that K3 is a global event. The K1 and K3 3He events are similar in most respects to the two peaks previously detected in the Cenozoic, suggesting a similar origin. These have been attributed to a major asteroid collision in the Late Miocene and to a shower of either comets or asteroids in the Late Eocene. Based on the age and temporal evolution of K1, we suggest that it most likely records the collision which produced the Baptistina asteroid family independently dated at ~80 Ma. The K3 event is less easily explained. It is characterized by an unusually spiky and erratic temporal progression, suggesting an unusual abundance of very 3He rich particles not previously seen in the sedimentary 3He record. We suggest this episode arises either from a comet shower or from an asteroid shower possibly associated with dust-producing lunar impacts.
Resumo:
A major goal of Ocean Drilling Program (ODP) Leg 130 was to drill four sites down the northeastern flank of the Ontong Java Plateau to collect a series of continuous sedimentary sequences that would provide a depth transect of Neogene sediments. In particular, the study of the sediments recovered along the depth transect is expected to yield high-resolution stratigraphic, geochemical, and physical properties records across intervals of major paleoceanographic changes by evaluating variations of primary sedimentological and paleoceanographic indicators (e.g., carbonates, isotopes, grain size, microfossil assemblages, etc.). This data report presents the results of highresolution (3-5 Ka sample intervals) analyses of carbonate concentration and bulk sediment grain size at Sites 803-806 for the time interval from 2 Ma to the present.
Resumo:
Detailed stable isotopic and calcium carbonate records (with a sampling resolution of 3000 yr.) from the middle Miocene section of hydraulic piston corer (HPC) Hole 574A provide a sequence that records the major shift in the oxygen isotopic composition of the world's oceans that occurred at about 14 Ma. The data suggest that this transition was rapid and spans about 30,000 yr. of sediment deposition. In intervals before and after the shift, the mean d18O values are characterized by a constant mean with a high degree of variability. The degree of variability in both the d18O and d13C records is comparable to that observed for the Pliocene and earliest Pleistocene and does not show a significant change before or after the major shift in the d18O record. Whereas the oxygen isotopic record is characterized by relatively stable mean values before and after the middle Miocene event, the d13C record shows a number of significant offsets in the mean value separated by intervals of high-frequency variations. Time and frequency domain analysis of all records from Hole 574A indicate that the frequency components shown to be related to orbital changes in the Pleistocene record are also present in the middle Miocene. The high variability observed in the Site 574 isotopic records places important constraints on models describing the role of formation of the Antarctic ice sheet during the middle Miocene climatic transitions. Thus, HPC Hole 574A provides a valuable sequence for detailed study of climatic variability during an important time in the Earth's history, although we cannot provide a definitive explanation of the major oxygen isotopic event of the middle Miocene.
Resumo:
The biostratigraphic distribution and abundance of middle Miocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program (ODP) Leg 138 Holes 844B, 847B, 848B, 849B, 850B, 85 IB, 852B, and 854B from the eastern Equatorial Pacific Ocean. The silicoflagellates were generally abundant and well preserved and frequently exhibited an unusually large range of variation. The upper Miocene of near-equatorial sites includes an assemblage of Bachmannocena diodon nodosa, which includes a bridge across the width of the basal ring. Stratigraphically below this, at sites within 5° of the equator is a lengthy interval of specimens of Distephanus speculum tenuis, which have a fragile apical structure. Both the intervals of Bachmannocena diodon nodosa plexus and Distephanus speculum tenuis are biostratigraphically useful within 5° of the equator, but are less useful beyond that. An unusual range of variation also is observed for Dictyocha in the Pliocene sediments at about the point where D. perlaevis and D. messanensis appear in the geologic record. This variation may be explained by hybridization between diverging species.