140 resultados para Handling of fish


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different sce- narios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcy-clohexasiloxane (D6) were analyzed in sediment, Zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 169S retrieved a complete Holocene sequence from Saanich Inlet, British Columbia, Canada. Fish and diatom remains were extracted from sediments at Site 1034. Very small fish bones, teeth and scales were ubiquitous except in the lowermost glaciomarine clays; scales degraded with depth. In the identifiable fraction, Pacific herring were the most abundant with Pacific hake and cartilaginous fish yielding significant fractions. Fish remains appear just before 12 000 BP but greatest diversity does not occur until about 6500 BP. A smoothed abundance curve highlights two periods of maximal abundance at about 1500 and 6500 BP. Abundances in the last 1000 years are lower than the rest of the record. A correlation with abundances of seven phytoplankton taxa is significant; diatoms explain about a third of the variance. This study demonstrates the use of fish and diatoms from the same paleosedimentary matrix to examine millennia-scale correlations between primary and tertiary production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury concentrations ([Hg]) in Arctic food fish often exceed guidelines for human subsistence consumption. Previous research on two food fish species, Arctic char (Salvelinus alpinus) and lake trout (Salvelinus namaycush), indicates that anadromous fish have lower [Hg] than nonanadromous fish, but there have been no intraregional comparisons. Also, no comparisons of [Hg] among anadromous (sea-run), resident (marine access but do not migrate), and landlocked (no marine access) life history types of Arctic char and lake trout have been published. Using intraregional data from 10 lakes in the West Kitikmeot area of Nunavut, Canada, we found that [Hg] varied significantly among species and life history types. Differences among species-life history types were best explained by age-at-size and C:N ratios (indicator of lipid); [Hg] was significantly and negatively related to both. At a standardized fork length of 500 mm, lake trout had significantly higher [Hg] (mean 0.17 µg/g wet wt) than Arctic char (0.09 µg/g). Anadromous and resident Arctic char had significantly lower [Hg] (each 0.04 µg/g) than landlocked Arctic char (0.19 µg/g). Anadromous lake trout had significantly lower [Hg] (0.12 µg/g) than resident lake trout (0.18 µg/g), but no significant difference in [Hg] was seen between landlocked lake trout (0.21 µg/g) and other life history types. Our results are relevant to human health assessments and consumption guidance and will inform models of Hg accumulation in Arctic fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.