390 resultados para Groundwater ages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical, morphological and isotopic (Rb-Sr and K-Ar) determinations were made on some detrital smectites of Palaeocene and Cenomanian ages from DSDP. drillings in the Atlantic Ocean. These minerals are not inert in their depositional environment; authigenic laths grow on detrital sheets with sharp borders. This authigenesis could occur slightly after deposition in a closed system, for some of these smectites. It has been tentatively quantified by the Rb-Sr and K-Ar isotopic methods, which seem also well suited to evaluate the chemical extent of this authigenesis. At least, no preferential loss of 40Ar vs. 87Sr could be detected in the minerals, even in those which are smaller than 0.2 ?m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glassy Turonian foraminifera preserved in clay-rich sediments from the western tropical Atlantic yield the warmest equivalent d18O sea-surface temperatures (SSTs) yet reported for the entire Cretaceous-Cenozoic. We estimate Turonian SSTs that were at least as warm as (conservative mean ~30 °C) to significantly warmer (warm mean ~33 °C) than those in the region today. However, if independent evidence for high middle Cretaceous pCO2 is reliable and resulted in greater isotopic fractionation between seawater and calcite because of lower sea-surface pH, our conservative and warm SST estimates would be even higher (32 and 36°C, respectively). Our new tropical SSTs help reconcile geologic data with the predictions of general circulation models that incorporate high Cretaceous pCO2 and lend support to the hypothesis of a Cretaceous greenhouse. Our data also strengthen the case for a Turonian age for the Cretaceous thermal maximum and highlight a 20-40 m.y. mismatch between peak Cretaceous-Cenozoic global warmth and peak inferred tectonic CO2 production. We infer that this mismatch is either an artifact of a hidden Turonian pulse in global ocean-crust cycling or real evidence of the influence of some other factor on atmospheric CO2 and/or SSTs. A hidden pulse in crust cycling would explain the timing of peak Cretaceous-Cenozoic sea level (also Turonian), but other factors are needed to explain high-frequency (~10-100 k.y.) instability in middle Cretaceous SSTs reported elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present sea surface temperature (SST) estimates based on the relative abundances of long-chain C37 alkenones (UK37') in four sediment cores from a transect spanning the subtropical to subantarctic waters across the subtropical front east of New Zealand. SST estimates from UK37' are compared to those derived from foraminiferal assemblages (using the modern analog technique) in two of these cores. Reconstructions of SST in core tops and Holocene sediments agree well with modern average summer temperatures of ~18°C in subtropical waters and ~14°C in subpolar waters, with a 4°-5°C gradient across the front. Down core UK37' SST estimates indicate that the regional summer SST was 4°-5°C cooler during the last glaciation with an SST of ~10°C in subpolar waters and an SST of ~14°C in subtropical waters. Temperature reconstructions from foraminiferal assemblages agree with those derived from alkenones for the Holocene. In subtropical waters, reconstructions also agree with a glacial cooling of 4° to ~14°C. In contrast, reconstructions for subantarctic pre-Holocene waters indicate a cooling of 8°C with glacial age warm season water temperatures of ~6°C. Thus the alkenones suggest the glacial temperature gradient across the front was the same or reduced slightly to 3.5°-4°C, whereas foraminiferal reconstructions suggest it doubled to 8°C. Our results support previous work indicating that the STF remained fixed over the Chatham Rise during the Last Glacial Maximum. However, the differing results from the two techniques require additional explanation. A change in euphotic zone temperature profiles, seasonality of growth, or preferred growth depth must have affected the temperatures recorded by these biologically based proxies. Regardless of the specific reason, a differential response to the environmental changes between the two climate regimes by the organisms on which the estimates are based suggests increased upwelling associated with increased winds and/or a shallowing of the thermocline associated with increased stratification of the surface layer in the last glaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentation rates (SR) for metalliferous and ore sediments containing ore material in 15 depressions of the Red Sea rift zone are discussed. SR for normal sediments was ca. 3.2 cm/ka in the second half of Holocene, 14.3 cm/ka yrs in the first half of Holocene, and 21.3 cm/ka in Late Würmian. Accumulation of metalliferous and ore sediments requires considerable accumulation of hydrothermal matter. Ore sediments have been found primarily in the Atlantis II and Chain Deeps; average sedimentation rate in these depressions is 90.0 cm/ka. In other depressions geothermal activity during considered time intervals was lower, and ore material occurs as admixture or in layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of radiocarbon dating of 23 cores (81 determinations) collected in the Red Sea rift zone at 8°N are presented. All of the main tectonic structures were dated: the upper and lower tectonic benches, the salt scarp, and the axial zone. Sediments in the upper tectonic bench exhibit normal sedimentation, while all other structures, which have highly dissected relief, show extensive re-deposition or non-accumulation of sediments. Sedimentation rate in Holocene was from two to three times lower than in Late Würm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most Cenozoic nannofossil and many foraminiferal zonal boundaries have been accurately determined and magnetostratigraphically calibrated at five Leg 73 boreholes. The numerical ages of the boundaries were computed by assuming a linear seafloor spreading rate and a radiometric age of 66.5 m.y. for the Cretaceous/Tertiary boundary. Alternative magnetostratigraphic ages (given below in parentheses) were obtained by adopting a 63.5 m.y. age for the Cenozoic. Our data confirm previous determinations of the Pleistocene/Pliocene boundary at 1.8 (1.7) m.y. and of the Pliocene/ Miocene boundary at 5.1 (5.0) m.y. The Miocene/Oligocene boundary is placed within Chron C-6C and has a magnetostratigraphic age of 23.8 to 24.0 (22.7 to 22.9) m.y. The Oligocene/Eocene boundary is also very precisely located within Chron C-13-R, with a magnetostratigraphic age of 37.1 to 37.2 (35.5 to 35.6) m.y. The Eocene/Paleocene boundary should be located within an uncored interval of Chron C-24 and have a magnetostratigraphic age of 59.0 (55.4) +/- 0.2 m.y. The general accord of the magnetostratigraphic and radiometric ages supports the hypothesis that the seafloor spreading rate was linear during the Cenozoic. Two possible exceptions are noted: the middle Miocene radiometric ages are a few million years older, and the early Eocene radiometric ages are several million years younger, than the corresponding magnetostratigraphic ages.