140 resultados para GEO 4 : global environment outlook, environment for development
Resumo:
The Global and Russian Energy Outlook up to 2040, prepared by the Energy Research Institute of the Russian Academy of Sciences and the Analytical Center for the Government of the Russian Federation, analyses the long-term changes in the main energy markets and thereby identifies the threats to the Russian economy and energy sector. Research has shown that shifts in the global energy sector, especially in hydrocarbon markets (primarily the development of technologies for shale oil and gas extraction), will result in a slowdown of Russia's economy by one percentage point each year on average due to a decrease in energy exports comparison with the official projections. Owing to the lack of development of an institutional framework, an outdated tax system, low competition and low investment efficiency, Russia will be the most sensitive to fluctuations in global hydrocarbon markets among all major energy market players within the forecast period.
Resumo:
The Helgoland mud area in the German Bight is one of the very few sediment depocenters in the North Sea. Despite the shallowness of the setting (<30 m water depth), its topmost sediments provide a continuous and high-resolution record allowing the reconstruction of regional paleoenvironmental conditions for the time since ~400 a.d. The record reveals a marked shift in sedimentation around 1250 a.d., when average sedimentation rates drop from >13 to ~1.6 mm/year. Among a number of major environmental changes in this region during the Middle Ages, the disintegration of the island of Helgoland appears to be the most likely factor which caused the very high sedimentation rates prior to 1250 a.d. According to historical maps, Helgoland used to be substantially bigger at around 800 a.d. than today. After the shift in sedimentation, a continuous and highly resolved paleoenvironmental record reflects natural events, such as regional storm-flood activity, as well as human impacts at work at local to global scales, on sedimentation in the Helgoland mud area.