452 resultados para Fronts in Indian Ocean sector
Resumo:
One of the main sources of anthropogenic radionuclides in the ocean is the global fallout resulting from the nuclear tests that had been conducted by the United States, the former Soviet Union, and other countries between 1945 and 1990 mainly in the Northern Hemisphere. The most extensive fallout was observed in the middle latitudes of the Northern Hemisphere in 1963 immediately after the nuclear tests of 1961-1962 conducted by the United States and the Soviet Union. In 2006-2009, under the auspices of an agreement between the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences and the National Center of Antarctic and Marine Research of the Ministry of Earth Sciences of India, cooperative geological and geochemical investigations were organized in several regions of the Indian Ocean. During these expeditions, the spatial distribution of anthropogenic radionuclides was investigated in the water of the Indian Ocean. The main results of these investigations are reported in this paper.
Resumo:
The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.
Resumo:
Trace element contents in different types of recent botoom sediments of the Indian Ocean are given. Sediment samples were obtained during cruises of the P.P. Shirshov Institute of Oceanology, Moscow.
Resumo:
In the East Indian Ocean direct contribution of land volcanism to sedimentation appears as interlayers of tephra and tuffaceous sediments, pumice fragments, and dispersed volcanoclastic materials of silty grain size. Similarity of distribution of tephra, tuffaceous sediments, Ethmodiscus ooze, and turbidites in the Pleistocene section results from deposition of all these materials under controll of a single factor, namely synchronous redistribution owing to seismic activity on the ocean floor and on the Sunda Islands. Burial of layers of oxidized deposits and formation of iron-manganese nodules is at least partly related to global climate cooling and to circulation of ocean waters.
Resumo:
Concentrations of adenosine triphosphate (ATP), urea, and dissolved organic carbon in bottom water are shown to be considerable, sometimes several times higher than in the photic and surface layers of the ocean. Urea and ATP concentrations are inversely proportional. Identified biochemical characteristics of bottom water are of great importance in determining the status of the aquatic environment. The highest life activity (maximum ATP content) in bottom water appeared in the vicinity of faults in rift zones of the ocean, where high gas concentrations were also found. Population of chemoautotrophic microorganisms was clearly present under these conditions. Biochemical investigations provide additional criteria for identifying oil and gas prospects. They are also of definite interest in combination with gasometric determinations, which will undoubtedly give us deeper understanding of processes of formation of oil and gas and will help in finding them.