142 resultados para FE3
Resumo:
Major- and trace-element analyses, mineral chemistry, and Sr-Nd isotopic determinations were obtained on representative igneous rocks drilled from the Nankai accretionary complex (Site 808) during Ocean Drilling Program Leg 131. For the first time, the oceanic basement of the subducting plate below an accretionary prism has been reached. The Nankai Trough basement was encountered at a depth of 1289.9 mbsf and a total of 37.1 m of igneous rocks, middle Miocene (15.6 Ma) in age, was penetrated. Two main lithological units have been distinguished from the top downward; sill-like rocks (Unit I: Cores 105, 106, 107) and pillow lavas (Unit II: Core 108). Basalts are predominantly nonvesicular, hypocrystalline, aphyric to slightly phyric with intersertal to intergranular textures. Alteration is generally slight to moderate. All the basaltic rocks are cut by ramifying veins of varying widths. Secondary mineral assemblages (including vein fillings) are typical of submarine alteration and zeolite to low greenschist facies metamorphism. The order of crystallization of primary minerals is: olivine, plagioclase, clinopyroxene. This, together with mineral chemistry, characterized by forsteritic olivine (Fo 84-85), highly anorthitic Plagioclase (up to An 90), and in particular the composition of clinopyroxene, are typical of normal mid-ocean ridge basalts (MORB). In terms of Zr/Y (2.9-3.8) and Zr/Nb (21-58), all the analyzed samples plot in the normal MORB field. The chondrite-normalized REE patterns confirm the close affinity with normal MORB type (LaN/SmN: 0.6-0.8). Note that such magmatism does not reveal any evidence of subduction-related geochemical components. The 87Sr/86Sr isotopic ratios range from 0.70339 in pillow lavas to 0.70317 in the least-altered basalts of sill units (ratios reduced to 0.70265-0.70271 by HC1 2.5 N hot leaching), whereas 143Nd/144Nd ratios are 0.51314-0.51326. These values conform with those of normal MORB. Stratigraphy, petrography, and geochemistry of the basaltic rocks recovered at Site 808 appear very similar to those from the Shikoku Basin basement (particularly Sites 442 and 443, DSDP Leg 58), analogously identified as normal MORB.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.
Resumo:
During Legs 118 and 176, Ocean Drilling Program Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, was drilled to a total depth of 1508 meters below seafloor (mbsf) with nearly 87% recovery. The recovered core provides a unique section of oceanic Layer 3 produced at an ultraslow spreading ridge. Metamorphism and alteration are extensive in the section but decrease markedly downward. Both magmatic and hydrothermal veins are present in the core, and these were active conduits for melt and fluid in the crust. We have identified seven major types of veins in the core: felsic and plagioclase rich, plagioclase + amphibole, amphibole, diopside and diopside + plagioclase, smectite ± prehnite ± carbonate, zeolite ± prehnite ± carbonate, and carbonate. A few epidote and chlorite veins are also present but are volumetrically insignificant. Amphibole veins are most abundant in the upper 50 m of the core and disappear entirely below 520 mbsf. Felsic and plagioclase ± amphibole ± diopside veins dominate between ~50 and 800 mbsf, and low-temperature smectite, zeolite, and prehnite veins are present in the lower 500 m of the core. Carbonate veinlets are randomly present throughout the core but are most abundant in the lower portions. The amphibole veins are closely associated with zones of intense crystal plastic deformation formed at the brittle/ductile boundary at temperatures above 700°C. The felsic and plagioclase-rich veins were formed originally by late magmatic fluids at temperatures above 800°C, but nearly all of these have been overprinted by intense hydrothermal alteration at temperatures between 300° and 600°C. The zeolite, prehnite, and smectite veins formed at temperatures <100°C. The chemistry of the felsic veins closely reflects their dominant minerals, chiefly plagioclase and amphibole. The plagioclase is highly zoned with cores of calcic andesine and rims of sodic oligoclase or albite. In the felsic veins the amphibole ranges from magnesio-hornblende to actinolite or ferro-actinolite, whereas in the monomineralic amphibole veins it is largely edenite and magnesio-hornblende. Diopside has a very narrow range of composition but does exhibit some zoning in Fe and Mg. The felsic and plagioclase-rich veins were originally intruded during brittle fracture at the ridge crest. The monomineralic amphibole veins also formed near the ridge axis during detachment faulting at a time of low magmatic activity. The overprinting of the igneous veins and the formation of the hydrothermal veins occurred as the crustal section migrated across the floor of the rift valley over a period of ~500,000 yr. The late-stage, low-temperature veins were deposited as the section migrated out of the rift valley and into the transverse ridge along the margin of the fracture zone.
Resumo:
Diabases were recovered during Legs 137 and 140 at Hole 504B from depths between 1621.5 and 2000.4 meters below seafloor in the lower sheeted dike complex. The samples contain multiple generations of millimetric to centimetric veins. The orientation of the measured veins suggests that two main vein sets exist: one characterized by shallow dipping and the other by random trend. Thermal contraction during rock cooling is considered the main mechanism responsible for fracture formation. Vein infill is related to the circulation of hydrothermal fluids near the spreading axis. Some veins are surrounded by millimeter-sized alteration halos due to fluid percolation from the fractures through the host rock. Vein-filling minerals are essentially amphibole, chlorite, and zeolites. Amphibole composition is controlled by the microstructural site of the rock. Actinolite is the main amphibole occurring in the veins and also in the groundmass away from the halos. In the alteration halos, amphibole shows composition of actinolitic hornblende and Mg-hornblende. Late-stage tension gashes and interstitial spaces in some amphibole-bearing veins are filled with zeolites, suggesting that the veins likely suffered multiple opening stages that record the cooling history of the circulating fluids. Evidence of deformation recorded by the recovered samples seems to be restricted to veins that clearly represent elements of weakness of the rock. On the basis of vein geometry and microstructure we infer structural interpretations for the formation mechanism and for deformation of veins.
Resumo:
During the last 8 m.y. the Papuan Peninsula region of Papua New Guinea has been affected by extension which opened the Woodlark Basin. The present-day spreading tip is located at the foot of the Moresby Seamount, a crustal block whose northern flank is an active low-angle normal fault related to this extension. During Ocean Drilling Program Leg 180 (7 June-11 August 1998), 11 sites (1108-1118) were drilled along a north-south-trending transect across the Woodlark Basin just ahead of the spreading tip. Four of these sites (1118, 1109, 1114, and 1117) reached the crystalline basement, which is composed of diabase and gabbro. Sites 1118 and 1109, located on the Woodlark Rise, belong to the hanging wall block, and Sites 1114 and 1117, located on the crest of the Moresby Seamount, belong to the footwall block and the fault zone itself. Most of the basalt, diabase, and gabbro that were recovered show a well-preserved magmatic texture. The diabase, which is the most abundant rock type, has a coarse-grained ophitic texture composed of poikilitic clinopyroxene including radiating, locally skeletal plagioclase laths with interstitial iron oxide grains. Secondary mineralogy consists of chlorite, zeolite, calcite, albite, and quartz. The gabbro shows a medium-grained granular texture. The magmatic mineralogy consists of euhedral laths of plagioclase and anhedral interstitial clinopyroxene. Secondary mineralogy consists of a magnesio to actinolitic hornblende, chlorite, clinozoisite, zeolite, quartz, and calcite. The retrograde metamorphic evolution of both gabbro and diabase occurred under low amphibolite to subgreenschist facies conditions associated mainly with brittle deformation and the development of a local low-temperature shear zone. This shows no evidence for high thermal gradient in the crust during the continental rifting.
Resumo:
Electron microprobe and X-ray diffraction data for north Pacific manganese nodules reveal that the transition metal distributions are controlled by the mineralogy. Microlayers rich in 10Å-manganates generally have high Mn/Fe ratios and positive correlations between Ni, Cu and Mn, and between Co and Fe. Microlayers rich in vernadite, on the other hand, show low Mn/Fe ratios, and Co, Ni and Cu all show positive correlations with Mn. The 10Å-manganates form mainly in porewaters with high Mn/Fe ratios. The Ni2+ and Cu2+ ions are post-depositionally incorporated into the interlayers of the manganates, whereas Co3+ is substituted for Fe3+ in ferric oxyhydroxides. In seawater with a low Mn/Fe ratio, on the other hand, the adsorption of positively charged ferric oxyhydroxides on negatively charged [MnO6] octahedral layers suppresses the growth of 10Å-manganates, enhancing the formation of vernadite. Positively charged hydroxides of Co3+, Ni2+ and Cu2+ are also adsorbed on the [MnO6] layers. These mechanisms of mineral formation and metal uptake are corroborated by data for other oceanic non-hydrothermal manganese nodules and crusts.
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.