212 resultados para Eusebius, of Caesarea, Bishop of Caesarea, ca. 260-ca. 340.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-seven white mica clasts were separated from five samples taken from near the bases of turbidites ranging in age from early Albian to middle Eocene. Twenty two (39%) of the micas have ages between 260 and 340 Ma and five (9%) have older ages (~400-600 Ma). The former age range is characteristic of the North American Alleghenian orogeny and the Iberian Variscan orogeny. The latter range is characteristic of the North American Acadian orogeny and older basement rocks in the Grand Banks and Newfoundland areas. Both age ranges are present in the middle Eocene sample, but only the younger range occurs in the middle Albian sample. This difference could be a sampling artifact. If this is not the case, then the most likely explanation is that the Acadian-aged micas within the Meguma Zone underlying the Grand Banks were totally reset by Alleghenian reactivation of the zone, a feature which occurs extensively in Nova Scotia. The addition of Acadian-aged micas in the middle Eocene sample may reflect a change in sediment provenance as drainage systems unrelated to rift topography developed. With the exception of one clast dated at 186 Ma, the 12 other micas obtained from the upper Paleocene sample yielded ages between 55 and 74 Ma, with 7 falling within ±2 m.y. of the 57-Ma age of the sample indicated by the biostratigraphic age-depth plot for Site 1276. This, together with the volcaniclastic content of the sample, indicates an input from near-contemporaneous volcanism. The nearest known occurrences of near-contemporaneous late Paleocene volcanism that could have produced white micas are in Greenland and Portugal, some 2000 and 1500 km distant, respectively, from Site 1276 during the Paleocene. However, ages of volcanism in these areas indicate that they could probably not be sources of micas younger than 60 m.y., which suggests some as-yet unknown volcanic source in the North Atlantic area. Accumulation in the Grand Banks area of airborne-transported volcaniclastic material from eruptions of slightly different ages, followed by a single resedimentation event, could account for the spread of dates obtained from the sample. White micas from the lowermost Albian sample show a spread of ages between 37 and 284 Ma that is completely different from the age distribution pattern of the middle Albian and middle Eocene samples. The sample location is between, and at least 25 m above and below, two igneous sills dated at 98 and 105 Ma. The sills have narrow thermal aureoles and ages older than the youngest detrital micas in the sample. It is unlikely, therefore, that the spread of mica ages in the sample is due to partial resetting of ages caused by thermal effects associated with the intrusion of the sills. The resetting may have been associated with a longer lived thermal event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45' N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]_SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]_HydEnd) and thereby adopts a d44/40Ca_HydEnd of -0.95+/-0.07 per mil relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that d44/40Ca_HydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a d44/40Ca of -1.17+/-0.04 per mil (SW) for the host-rocks in the reaction zone and -1.45+/-0.05 per mil (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed d44/40Ca for Bulk Earth of -0.92+/-0.18 per mil (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about D44/40Ca = -0.5 per mil relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average d44/40Ca of -1.54+/-0.08 per mil (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.