859 resultados para East Antarctica
Resumo:
Concentrations of major ions, silicate and nutrients (total N and P) were measured in samples of surface water from 28 lakes in ice-free areas of northern Victoria Land (East Antarctica). Sixteen lakes were sampled during austral summers 2001/02, 2003/04, 2004/05 and 2005/06 to assess temporal variation in water chemistry. Although samples showed a wide range in ion concentrations, their composition mainly reflected that of seawater. In general, as the distance from the sea increased, the input of elements from the marine environment (through aerosols and seabirds) decreased and there was an increase in nitrate and sulfate concentrations. Antarctic lakes lack outflows and during the austral summer the melting and/or ablation of ice cover, water evaporation and leaching processes in dry soils determine a progressive increase in water ion concentrations. During the five-year monitoring survey, no statistically significant variation in the water chemistry were detected, except for a slight (hardly significant) increase in TN concentrations. However, Canonical Correspondence Analysis (CCA) indicated that other factors besides distance from the sea, the presence of nesting seabirds, the sampling time and percentage of ice cover affect the composition of water in Antarctic cold desert environments.
Resumo:
Cretaceous to Quaternary sediments recovered at Leg 119 Sites 738 and 744 on the southern tip of the Kerguelen Plateau were studied in order to determine the depositional environment and the paleoceanography of the southern Indian Ocean and especially the long-term glacial history of East Antarctica. Emphasis is given to bulk-sediment composition, grain-size data, and clay mineralogy. The sediment sequence at the two sites is generally of a highly pelagic character, with nannofossil oozes, chalks, and limestones dominant from the Turanian to upper Miocene and diatom oozes dominant within the uppermost Miocene to Holocene interval. The first indication of glaciation at sea level is the occurrence of isolated gravel and terrigenous sand grains, which indicate ice rafting in the middle Eocene interval of 45.0-42.3 Ma. A major intensification of glaciation, probably the onset of continental East Antarctic glaciation, is recorded in sediments of early Oligocene age (36.0 Ma). All major sediment parameters document this event. The clay mineralogy changes from smectite-dominated assemblages, typical of moderately warm and humid climatic conditions in which chemical weathering processes are prevalent, to illite- and chlorite-dominated assemblages, indicative of cooler climates and physical weathering. Ice-rafted debris of both gravel and sand size occurs in large quantities in that interval and coincides with a change in the mode of carbonate deposition. Carbonate contents are relatively high and uniform (90%-95%) in strata younger than early Oligocene; in Oligocene to upper Miocene strata they fluctuate between 65% and 95%. Oligocene and Neogene hiatuses reflect an intensification of oceanic circulation and the increased erosional force of Circumpolar Deep Water. The long-term Cenozoic cooling trend was interrupted by a phase of early Miocene warming indicated by maximum Neogene smectite concentrations. Although ice-rafted debris is present only in minor amounts and mainly in the silt fraction of early Oligocene to late Miocene age, it shows that glaciers advanced to the East Antarctic shoreline throughout that time. Ice-rafting activity drastically increased in latest Miocene time, when carbonate deposition decreased and diatom ooze sedimentation started. This suggests a pronounced intensification of Antarctic glaciation combined with a northward migration of the Polar Front.
Resumo:
Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.