149 resultados para Dongling Mountain
Resumo:
In 2001, a weather and climate monitoring network was established along the temperature and aridity gradient between the sub-humid Moroccan High Atlas Mountains and the former end lake of the Middle Drâa in a pre-Saharan environment. The highest Automated Weather Stations (AWS) was installed just below the M'Goun summit at 3850 m, the lowest station Lac Iriki was at 450 m. This network of 13 AWS stations was funded and maintained by the German IMPETUS (BMBF Grant 01LW06001A, North Rhine-Westphalia Grant 313-21200200) project and since 2011 five stations were further maintained by the GERMAN DFG Fennec project (FI 786/3-1), this way some stations of the AWS network provided data for almost 12 years from 2001-2012. Standard meteorological variables such as temperature, humidity, and wind were measured at an altitude of 2 m above ground. Other meteorological variables comprise precipitation, station pressure, solar irradiance, soil temperature at different depths and for high mountain station snow water equivalent. The stations produced data summaries for 5-minute-precipitation-data, 10- or 15-minute-data and a daily summary of all other variables. This network is a unique resource of multi-year weather data in the remote semi-arid to arid mountain region of the Saharan flank of the Atlas Mountains. The network is described in Schulz et al. (2010) and its further continuation until 2012 is briefly discussed in Redl et al. (2015, doi:10.1175/MWR-D-15-0223.1) and Redl et al. (2016, doi:10.1002/2015JD024443).
Resumo:
From the 12th until the 17th of July 2016, research vessel Maria S. Merian entered the Nordvestfjord of Scorsby Sound (East Greenland) as part of research cruise MSM56, "Ecological chemistry in Arctic fjords". A large variety of chemical and biological parameters of fjord and meltwater were measured during this cruise to characterize biogeochemical fluxes in arctic fjords. The photo documentation described here was a side project. It was started when we were close to the Daugaard-Jensen glacier at the end of the Nordvestfjord and realized that not many people have seen this area before and photos available for scientists are probably rare. These pictures shall help to document climate and landscape changes in a remote area of East Greenland. Pictures were taken with a Panasonic Lumix G6 equipped with either a 14-42 or 45-150 objective (zoom factor available in jpg metadata). Polarizer filters were used on both objectives. The time between taking the pictures and writing down the coordinates was maximally one minute but usually shorter. The uncertainty in position is therefore small as we were steaming slowly most of the time the pictures were taken (i.e. below 5 knots). I assume the uncertainty is in most cases below 200 m radius of the noted position. I did not check the direction I directed the camera to with a compass at the beginning. Hence, the direction that was noted is an approximation based on the navigation map and the positioning of the ship. The uncertainty was probably around +/- 40° but initially (pictures 1-17) perhaps even higher as this documentation was a spontaneous idea and it took some time to get the orientation right. It should be easy, however, to find the location of the mountains and glaciers when being on the respective positions because the mountains have a quite characteristic shape. In a later stage of this documentation, I took pictures from the bridge and used the gyros to approximate the direction the camera was pointed at. Here the uncertainty was much lower (i.e. +/- 20° or better). Directions approximated with the help of gyros have degree values in the overview table. The ship data provided in the MSM56 cruise report will contain all kinds of sensor data from Maria S. Merian sensor setup. This data can also be used to further constrain the position the pictures were taken because the exact time a photo was shot is noted in the metadata of the .jpg photo file. The shipboard clock was set on UTC. It was 57 minutes and 45 seconds behind the time in the camera. For example 12:57:45 on the camera was 12:00:00 UTC on the ship. All pictures provided here can be used for scientific purposes. In case of usage in presentations etc. please acknowledge RV Maria S. Merian (MSM56) and Lennart T. Bach as author. Please inform me and ask for reprint permission in case you want to use the pictures for scientific publications. I would like to thank all participants and the crew of Maria S. Merian Cruise 56 (MSM56, Ecological chemistry in Arctic fjords).
Resumo:
Harvesting of Chinese caterpillar fungus, one of the most expensive biological commodities in the world, has become an important livelihood strategy for mountain communities of Nepal. However, very little is known about the role of Chinese caterpillar fungus in household economy. We estimated the economic contribution of Chinese caterpillar fungus to the household income, quantified the extent of "Chinese caterpillar fungus dependence" among households with different economic and social characteristics, and assessed the role of cash income from the Chinese caterpillar fungus harvest in meeting various household needs including education, debt payments, and food security. Results show that Chinese caterpillar fungus income is the second largest contributor to the total household income after farm income with 21.1% contribution to the total household income and 53.3% to the total cash income. The contribution of Chinese caterpillar fungus income to total household income decreases as the household income increases making its contribution highest for the poorest households. There is significant correlation between Chinese caterpillar fungus dependency and percentage of family members involved in harvesting, number of food-sufficient months, and total income without Chinese caterpillar fungus income. Income from Chinese caterpillar fungus is helping the poorest to educate children, purchase food, and pay debts. However, reported decline of Chinese caterpillar fungus from its natural habitat might threaten local livelihoods that depend on the Chinese caterpillar fungus in future. Therefore, sustainable management of Chinese caterpillar fungus through partnership among local institutions and the state is critical in conserving the species and the sustained flow of benefits to local communities.