607 resultados para Darwin, Charles Robert, 1809-1882
Resumo:
Material and data were collected at 41 sites in the subpolar North Atlantic Ocean between Scotland and Newfoundland, during the RRS CharlesDarwin CD159 cruise in July 2004 (McCave, 2005). Sites were selected to reflect the major inputs of water that becomes the North Atlantic Deep Water (NADW); the Iceland-Scotland Overflow Water (ISOW), the Denmark Strait Overflow Water (DSOW) and the Labrador Sea Water (LSW). Areas cored were the south Iceland Rise, SE Greenland slope/rise and Eirik Drift, and the Labrador margin. A total of 29 box cores, 19 piston cores, 6 kasten cores, 9 short gravity cores and 20 CTD casts as well as 28 surface water samples were collected during the cruise. Here we present sediment core-top sample ages. The cores were sampled at 1 or 0.5 cm intervals and we used the top 1 or 2 cm, depending on availability of foraminifera in the samples. Sediment samples were disaggregated on an end-over-end wheel, wet sieved at >63 um, and dry sieved to 63-150 and >150 um. Accelerator Mass Spectrometer (AMS) radiocarbon dating was done for each core top based on between 900-1600 monospecific planktonic foraminifera (Globigerina bulloides or Neogloboquadrina pachyderma (sinistral)). All dates were of modern or late Holocene age except site RAPID-08-5B (9806 ± 38 uncorrected 14C years BP) and site RAPID-14-10B (11543 ± 40 uncorrected 14C years BP). The >150 um fraction was split until approximately 300 foraminifera remained and counted for number of lithic grains, benthic foraminifera, planktonic foraminifera and foraminifera fragments. In all but the shallowest sample (Greenland rise, 761m water depth) benthic foraminifera constituted less than 2% of the total >150 um fraction of the sample.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.