294 resultados para Carrier-envelope phases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand the composition, characteristics of helium diffusion, and size distribution of interplanetary dust particles (IDPs) responsible for the long-term retention of extraterrestrial 3He, we carried out leaching, stepped heating, and sieving experiments on pelagic clays that varied in age from 0.5 Ma to ~90 Myr. The leaching experiments suggest that the host phase(s) of 3He in geologically old sediments are neither organic matter nor refractory phases, such as diamond, graphite, Al2O3, and SiC, but are consistent with extraterrestrial silicates, Fe-Ni sulfides, and possibly magnetite. Stepped heating experiments demonstrate that the 3He release profiles from the magnetic and non-magnetic components of the pelagic clays are remarkably similar. Because helium diffusion is likely to be controlled by mineral chemistry and structure, the stepped heating results suggest a single carrier that may be magnetite, or more probably a phase associated with magnetite. Furthermore, the stepped outgassing experiments indicate that about 20% of the 3He will be lost through diffusion at seafloor temperatures after 50 Myrs, while sedimentary rocks exposed on the Earth's surface for the same amount of time would lose up to 60%. The absolute magnitude of the 3He loss is, however, likely to depend upon the 3He concentration profile within the IDPs, which is not well known. Contrary to previous suggestions that micrometeorites in the size range of 50-100 µm in diameter are responsible for the extraterrestrial 3He in geologically old sediments [Stuart, F.M., Harrop, P.J., Knott, S., Turner, G., 1999. Laser extraction of helium isotopes from Antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He flux to earth. Geochimica et Cosmochimica Acta, 63, 2653-2665, doi:10.1016/S0016-7037(99)00161-1], our sieving experiment demonstrates that at most 20% of the 3He is carried by particles greater than 50 µm in diameter. The size-distribution of the 3He-bearing particles implies that extraterrestrial 3He in sediments record the IDP flux rather than the micrometeorite flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

40Ar-39Ar incremental heating experiments on a relatively unaltered basalt from Site 843 yield a crystallization age of 110 ± 2 Ma for the central Pacific Ocean igneous basement near Hawaii. Previous estimates of the age of the basement inferred by indirect methods and from radiometric dates of the South Hawaiian Seamounts are too young by 20-30 m.y. Phyllosilicate alteration minerals from veins in the Site 843 basalts define a Rb/Sr isochron with an age of 94.5 ± 0.5 Ma. The isochron records the last equilibration of the phyllosilicate minerals with a hydrothermal fluid at about 16 m.y. after the formation of the igneous basement. The last event recorded by calcite veins is the sealing of the crust by a sufficient thickness of sediment to impede the free circulation of seawater into the crust. The chemistry of the alteration minerals indicates the rare earth elements in the hydrothermal solutions were derived from alteration of the basalts and, furthermore, were transported in solution as metal species and carbonate complexes. Calcite with approximately seawater 87Sr/86Sr, but Sr contents too low to precipitate directly from seawater, is suggested to have formed at a late stage in the alteration history of the crust by the reaction of seawater with calcite precipitated earlier from basalt-dominated hydrothermal fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate-free metalliferous fraction of thirty-nine sediment samples from four DSDP Leg 92 sites has been analyzed for 12 elements, and a subset of 16 samples analyzed for Pb isotopic composition. The main geochemical features of this component are as follows: i) very high concentrations of Fe and Mn, typically 25-39% and 5-14%, respectively; ii) Al and Ca contents generally less than 2% and 5%, respectively; iii) high Cu (1000-2000 ppm), and Zn and Ni (500-1000 ppm) values; and iv) Co and Pb concentrations of 100-250 ppm. In terms of element partitioning within the metalliferous fraction, amorphous to poorly crystallized oxide-oxyhydroxides removed by the second leach carry virtually all of the Mn, and about 90% of the Ca, Sr and Ni. The well-crystallized goethite-rich material removed by the third leach carries the majority of Fe, Cu, and Pb. These relations hold for sediments as young as ~1-2 Ma, indicating early partitioning of hydrothermal Fe and Mn into separate phases. Calculated mass accumulation rates (MAR) for Fe, Mn, Cu, Pb, Zn and Ni in the bulk sediment show the same overall trends at three of the sites, with greatest MAR values near the basement, and a general decrease in MAR values towards the tops of the holes (for sediments deposited above the lysocline). These relations strongly support the concept of a declining hydrothermal contribution of these elements away from a ridge axis. Nevertheless, MAR values for these metals up to ~200 km from the ridge axis are orders of magnitude higher than on abyssal seafloor plains where there is no hydrothermal influence. Mn/Fe ratios throughout the sediment column at two sites indicate that the composition of the hydrothermal precipitates changed during transport through seawater, becoming significantly depleted in Mn beyond ~200-300 km from the axis, but maintaining roughly the same proportion of Fe. Most of the Pb isotope data for the Leg 92 metalliferous sediments form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts toward the field for Mn nodules. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb derived from basaltic and seawater end-member sources. The least radiogenic sediments reflect the average Pb isotope composition of discharging hydrothermal solutions and ocean-ridge basalt at the EPR over the ~4-8 Ma B.P. interval. Pb in sediments deposited up to 250 km from the axis can be almost entirely of basaltic-hydrothermal origin. Lateral transport of some basaltic Pb by ocean currents appears to extend to distances of at least 1000 km west of the East Pacific Rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microprobe data are presented for clinopyroxenes, plagioclases, palagonites, smectites, celadonites, and zeolites in Hole 462A sheet-flow basalts and Site 585 volcaniclastic sediments. Glomerocrystic clinopyroxenes in Hole 462A are predominantly Ti-poor augites with minor fractionation to ferroaugites in rim portions. Quenched plumose clinopyroxenes show considerable variation from Ca-rich to Ca-poor augites, although all are characterized by being Tirich and Cr-poor relative to the glomerocrysts. Two differentiated series of Site 585 pyroxene compositions, calcic augite and diopside-salite, demonstrate the coexistence, in the vitric and lithic clasts, of tholeiitic and alkali basalt types, respectively. Plagioclase compositions in all samples are mainly labradorites, although some zoned Hole 462A glomerocrysts range from An73 to An20 and are characterized by high Mg and Fe contents in the more calcic varieties. The K content of the plagioclases is highest in the more sodic crystals, although the overall higher orthoclase component of Site 585 plagioclases reflects the generally higher bulk-rock K content. The compositions of both secondary smectites and celadonites are similar irrespective of the alteration location (glass, matrix, vesicles, etc.), although brown smectites replacing interstitial glass have marginally higher total Fe contents than pale green and yellow smectites. Analyzed zeolites are mainly phillipsites with variable alkali content, and, together with associated celadonite, represent late-stage alteration repositories for K under mildly oxidizing conditions. The compositions of both early and late secondary minerals are typical of those formed by the submarine alteration of basaltic rocks at low temperatures.