344 resultados para Canada. 1992 Oct. 7
Resumo:
The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate (N=24-65 per station) 0.25 m**2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind/l (median 0.8 ind/l). In level ice, low ice algal pigment concentrations (<0.1-15.8 µg Chl a /l), low brine salinities (1.8-21.7) and flushing from the melting sea ice likely explain the low ice meiofauna concentrations. Higher abundances of Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind/l, median 40 ind/l), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind/m**2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.
Resumo:
A large deposit of ferromanganese oxide coated sands and scattered manganese nodules occurs in the northern portion of Lake Ontario. The Mn and Fe contents of the concretions are similar to those in concretions from other environments, while their Ni, Cu, and Co contents are lower than in deep-sea nodules, but higher than in most previously described lacustrine concretions. Pb and Zn are high in the coatings and exceed the concentrations found in many previously analyzed Mn deposits. Within the deposit, Mn, Ni, Co, and Zn contents are correlated, and they vary inversely with Fe. Mn, Fe, Ni, Cu, and Pb are present in the interstitial waters of the sediments underlying the deposit in higher concentrations than in the overlying lake waters, thus providing a potential source of metals for concretion formation.The origin and compositional variations in the deposit possibly can be explained in terms of the fractionation and precipitation of Fe and Mn as a result of redox variations in the lake sediments. Eh increases from south to north across the deposit in such a way that iron may be selectively oxidized and precipitated in the south and manganese, in the north. The upward diffusion of Mn, Fe, and associated elements from the underlying sediments probably provides the principal source of the metals in the south of the deposit, while metal-enriched bottom waters are probably the principal source in the north.
Resumo:
The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.
Resumo:
At Ny-Ålesund (78.9° N), Svalbard, surface radiation measurements of up- and downward short- and longwave radiation are operated since August 1992 in the frame of the Baseline Surface Radiation Network (BSRN), complemented with surface and upper air meteorology since August 1993. The long-term observations are the base for a climatological presentation of the surface radiation data. Over the 21-year observation period, ongoing changes in the Arctic climate system are reflected. Particularly, the observations indicate a strong seasonality of surface warming and related changes in different radiation parameters. The annual mean temperature at Ny-Ålesund has risen by +1.3 ± 0.7 K per decade, with a maximum seasonal increase during the winter months of +3.1 ± 2.6 K per decade. At the same time, winter is also the season with the largest long-term changes in radiation, featuring an increase of +15.6 ± 11.6 W/m**2 per decade in the downward longwave radiation. Furthermore, changes in the reflected solar radiation during the months of snow melt indicate an earlier onset of the warm season by about 1 week compared to the beginning of the observations. The online available dataset of Ny-Ålesund surface radiation measurements provides a valuable data source for the validation of satellite instruments and climate models.