155 resultados para BOMBUS-TERRESTRIS


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diatom flora from two sediment cores recovered from the upper 27 meters below seafloor (mbsf) in the oceanic frontal area off Sanriku, northeast Japan, during Ocean Drilling Program Leg 186 were analyzed. Diatom abundance seems to be in interglacial stages and suggests a south-north shifting of the frontal area. Diatom temperature values are less reliable because frequency of the warm-water species is smaller. Site 1151 was in a warm climate at ~50 ka, as were Deep Sea Drilling Project Sites 579 and 580 in the western North Pacific Ocean. A mixed diatom assemblage in the upper 3 mbsf at Site 1150 is evidence that the Tsugaru Warm Current flowed into the studied area through the Tsugaru Strait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.