141 resultados para Aquaflow (van Hinte, 1995)
Resumo:
Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.
Resumo:
This reconnaissance study was undertaken to determine whether the mass extinctions and faunal successions that mark the Cretaceous/Tertiary (K/T) boundary left a discernible molecular fossil record in the sediments of this period. Lipid signatures of sediments taken from above and below the K/T boundary were compared in core and outcrop samples taken from two locations: the U.S. east coast continental margin (western Atlantic Ocean, DSDP Site 605) and Stevns Klint, Denmark. Four calcareous sediments taken from above and below the K/T boundary in DSDP Hole 605, Section 605-66-1, revealed changing lipid signatures between above and below that are characterized by a large component of unresolved naphthenic hydrocarbons and a homologous series of n-alkanes ranging from Ci6 to C33. These lipid signatures are attributed to an influx of a terrestrial higher plant component and to bacterial reworking of the sediments under partially anoxic depositional and/or diagenetic conditions. The outcrop samples from Stevns Klint had extremely low concentrations of indigenous lipids. The fish clay at the K/T boundary contained traces of microbial hydrocarbons and fatty acids, whereas the carbonates above and below had only microbial fatty acids and additional terrestrial resin acids. The data from both sites indicate a perturbation in the deposition of lipid compound classes across the K/T boundary.