343 resultados para Aluminium ore
Resumo:
The paper reports specific mineralogical and geochemical characteristics of deposits from local depressions of the Derugin Basin. They were formed in an environment with periodic changes from oxic to anoxic conditions and show evidence for presence of hydrogen sulfide in bottom waters. Deposits of this type can be considered as a modern model for ancient ore-bearing black shale associations. Compared with typical metalliferous black shale sequences, which are characterized by high contents of organic matter, the sediments described here are depleted in elements of the organophilic association (Mo, Ni, Cu, Zn, V, and U), but have higher Mn contents.
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
Results of direct geological and geochemical observations of the modern Rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14'N; 33°54'W) carried out from the deep-sea manned Mir submersibles during Cruises 41 and 42 of the R/V Akademik Mstislav Keldysh in 1998-1999 and data of laboratory studies of collected samples are under consideration in the paper. The field lacks neovolcanic rocks and the axial part of the rift is filled in with a serpentinite protrusion. In this field there occur metalliferous sediments, as well as active and relict sulfide edifices composed of sulfide minerals; pyrrhotite, chalcopyrite, isocubanite, sphalerite, marcasite, pyrite, bornite, chalcosine, digenite, magnetite, anhydrite, rare troilite, wurtzite, millerite, and pentlandite have been determined. Sulfide ores are characterized by concentric-zoned textures. During in situ measurements during 35 minutes temperature of hydrothermal fluids was varying within a range from 250 to 350°C. Calculated chemical and isotopic composition of hydrothermal fluid shows elevated concentrations of Cl, Ni, Co, CH4, and H2. Values of d34S of H2S range from +2.4 to +3.1 per mil, of d13C of CH4 from -15.2 to -11.2 per mil, and d13C of CO2 from +1.0 to -4.0 per mil. Fluid inclusions are homogenized at temperatures from 140 to 360°C, whereas salinity of the fluid varies from 4.2 to 8.5 wt %. d34S values of sulfides range from +1.3 to +12.5 per mil. 3He/4He ratio in mineral-forming fluid contained in the fluid inclusions from sulfides of the Rainbow field varies from 0.00000374 to 0.0000101. It is shown that hydrothermal activity in the area continues approximately during 100 ka. It is assumed that the fluid and sulfide edifices contain components from the upper mantle. A hypothesis of phase separation of a supercritical fluid that results in formation of brines is proposed. Hydrothermal activity is related to the tectonic, not volcanic, phase of the Mid-Atlantic Ridge evolution.
Resumo:
Geomorphology of the Guinea Basin is described along with sediments from cores collected on the abyssal plain, within the abyssal hill zone, and in the eastern part of the Chain Fracture Zone. Stratigraphic differentiation of deep-sea sediments was based on diatom analysis, geochemical and lithological data. Holocene and Pleistocene were identified by these criteria. The lower boundary of Holocene is was found from a marked decrease in CaCO3 concentration and total diatom count. Mineral and chemical compositions are given for coarse silt fraction of various Late Pleistocene sediments. It is shown that this facial complex is determined by tectonic position of the Guinea Basin.
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.
Resumo:
The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.
Resumo:
Hydrogenic forms of iron and manganese occurrence were studied in samples of ferromanganese nodules sampled within two polygons during Cruise 28 of R/V Dmitry Mendeleeev (1982) in the western part of the Clarion-Clipperton ore province. Contents of labile exchangeable Fe and Mn, amorphous hydroxides and poorly soluble compounds of Fe and Mn were analyzed. In nodules from DM28-2474 Polygon labile exchangeable Fe and Mn and amorphous hydroxides dominated; in nodules from DM28-2483 Polygon poorly soluble compounds dominated. Analysis of contents of labile forms of Fe and Mn occurrence in different morphological types of nodules distinguished predominantly hydrogenous botryoidal nodules, spheroidal and ellipsoidal intergrowth nodules, and hydrogenic-diagenetic discoid nodules.