514 resultados para Agalma elegans
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.
Resumo:
Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.
Resumo:
Over the past decade, the ratio of Mg to Ca in foraminiferal tests has emerged as a valuable paleotemperature proxy. However, large uncertainties remain in the relationships between benthic foraminiferal Mg/Ca and temperature. Mg/Ca was measured in benthic foraminifera from 31 high-quality multicore tops collected in the Florida Straits, spanning a temperature range of 5.8° to 18.6°C. New calibrations are presented for Uvigerina peregrina, Planulina ariminensis, Planulina foveolata, and Hoeglundina elegans. The Mg/Ca values and temperature sensitivities vary among species, but all species exhibit a positive correlation that decreases in slope at higher temperatures. The decrease in the sensitivity of Mg/Ca to temperature may potentially be explained by Mg/Ca suppression at high carbonate ion concentrations. It is suggested that a carbonate ion influence on Mg/Ca may be adjusted for by dividing Mg/Ca by Li/Ca. The Mg/Li ratio displays stronger correlations to temperature, with up to 90% of variance explained, than Mg/Ca alone. These new calibrations are tested on several Last Glacial Maximum (LGM) samples from the Florida Straits. LGM temperatures reconstructed from Mg/Ca and Mg/Li are generally more scattered than core top measurements and may be contaminated by high-Mg overgrowths. The potential for Mg/Ca and Mg/Li as temperature proxies warrants further testing.
Resumo:
Radiolarians are very rare in all Leg 90 sites. They are relatively more frequent only in Neogene sediments from Sites 586 and 594, and in Eocene sediments at Site 592. In this chapter radiolarian abundances are recorded as comparative percentages for 92 Neogene morphotypes at Site 586B. Relative abundances only are estimated at Sites 592 and 594, where preservation is poor to moderate. A tentative correlation of radiolarian events at Hole 586B and Site 594 shows that only a few species can be found in both tropical and subantarctic areas. New evolutionary lineages are proposed. 1. Middle Miocene eucyrtids like Eucyrtidium teuscheri group evolved into a widespread species (E. teuscheri teuscheri) ranging from middle Miocene to Holocene and a temperate species (E. teuscheri orthoporus) ranging from middle Miocene to early Pleistocene. 2. Phormostichoartus pitomorphus appears to be a temperate descendant of the cosmopolitan P. fistula and disappears in early Pleistocene time. 3. The discovery of Lamprocyrtis daniellae n.sp. calls into question the lineage L. heteroporos -> L. nigriniae. 4. The evolution of Lamprocyclas maritalis from an ancestor group (L. aff. maritalis) is located in the early part of the Pterocanium prismatium Zone.