423 resultados para Acc rate Al
Resumo:
Sediments from five Leg 167 drill sites and three piston cores were analyzed for Corg and CaCO3. Oxygen isotope stratigraphy on benthic foraminifers was used to assign age models to these sedimentary records. We find that the northern and central California margin is characterized by k.y.-scale events that can be found in both the CaCO3 and Corg time series. We show that the CaCO3 events are caused by changes in CaCO3 production by plankton, not by dissolution. We also show that these CaCO3 events occur in marine isotope Stages (MIS) 2, 3, and 4 during Dansgaard/Oeschger interstadials. They occur most strongly, however, on the MIS 5/4 glaciation and MIS 2/1 deglaciation. We believe that the link between the northeastern Pacific Ocean and North Atlantic is primarily transmitted by the atmosphere, not the ocean. Highest CaCO3 production and burial occurs when the surface ocean is somewhat cooler than the modern ocean, and the surface mixed layer is somewhat more stable.
Resumo:
Ice-rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid-Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid-Pliocene, a strong correlation exists between the high-amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep-water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier-Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet-ocean interactions.
Resumo:
Planktonic foraminiferal assemblages from the upper Pleistocene part of Hole 1087A (0 to 12.1 meters below seafloor) are investigated to assess the role of global and local climate changes on surface circulation in the southern Benguela region. The benthic stable isotope record indicates that the studied interval is representative of the last four climatic cycles, that is, down to marine isotope Stage (MIS) 12. The species assemblages bear a clear transitional to subpolar character, with Neogloboquadrina pachyderma (d), Globorotalia inflata, and Globigerina bulloides, in order of decreasing abundance, as the dominant taxa. This species association presently characterizes the mixing domain of old upwelled and open ocean waters, seaward of the Benguela upwelling cells. Abundance variation of the dominant foraminiferal species roughly follows a glacial-interglacial pattern down to MIS 8, suggesting an alternation of upwelling strength and associated seaward extension of the belt of upwelled water as a response to global climate changes. This pattern is interrupted from ~250 ka down to MIS 12, where the phase relationship with global climate is ill defined and might be interpreted as a local response of the southern Benguela region to the mid-Brunhes event. Of particular interest is a single pulse of newly upwelled waters at the location of Site 1087 during early MIS 9 as indicated by a peak abundance of sinistral N. pachyderma (s). Variable input of warm, salty Indian Ocean thermocline waters into the southeast Atlantic, a key component of the Atlantic heat conveyor, is indicated by abundance changes of the tropical taxon Globorotalia menardii. From this tracer, we suggest that interocean exchange was hardly interrupted throughout the last 460 k.y., but was most effective at glacial terminations, particularly during Terminations I and II, as well as during the upper part of MIS 12. This maximum input of Indian Ocean waters around the southern tip of Africa is associated with the reseeding of G. menardii in the tropical Atlantic.
Resumo:
The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.
Resumo:
Samples from the upper portion of a cyclic pelagic carbonate sediment sequence in Deep-Sea Drilling Project (DSDP) hole 503B (4.0°N, 95.6°W) are the first group to be analyzed for paleoceanographic and paleoclimatic proxy-indicators of ice volume, deep ocean and surface water circulation, and atmospheric circulation in order to resolve the complex origin of the cyclicity. Temporal resolution is taken from the delta18O time scale, most other parameters are calculated in terms of their mass flux to the seafloor. CaCO3 percent in the sediments fluctuates in the well-known Pacific pattern and is higher during glacial times. The fluxes of opal and organic carbon have patterns similar to each other and show a variability of a factor of 2.5 to 4. The longer organic carbon record shows flux maxima during both glacial and interglacial times. The accumulation patterns of both opal and organic carbon suggest that the variability in surface water productivity and/or seafloor preservation of those materials is not simply correlated to glacial or interglacial periods. Eolian dust fluxes are greater during interglacial periods by factors of 2 to 5, indicating that eolian source regions in central and northern South America were more arid during interglacial periods. The record of eolian grain size provides a semiquantitative estimation of the intensity of the transporting winds. The eolian data suggest more intense atmospheric circulation during interglacial periods, opposite to the anticipated results. We interpret this observation as recording the southerly shift of the intertropical convergence zone to the latitude of hole 503B during glaciations.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
During Ocean Drilling Program (ODP) Leg 159, four sites (Sites 959-962) were drilled along a depth transect on the Côte d'Ivoire/Ghana Transform Margin. In this study, the Pliocene-Pleistocene history of carbonate and organic carbon accumulation at Hole 959C is reconstructed for the eastern equatorial Atlantic off the Ivory Coast/Ghana based on bulk carbonate, sand fraction, organic carbon, and other organic geochemical records (d13Corg, marine organic matter percentages derived from organic petrology, hydrogen index, C/N). Pliocene-Pleistocene sedimentation off the Ivory Coast/Ghana was strongly affected by low mean sedimentation rates, which are attributed to persistently enhanced bottom-water velocities related to the steep topography of the transform margin. Sand fraction and bulk carbonate records reveal typical glacial/interglacial cycles, preserved, however, with low time resolution. Intermediate carbonate accumulation rates observed throughout the Pliocene-Pleistocene suggest intense winnowing and sediment redistribution superimposed by terrigenous dilution. 'Atlantic-type' sand and carbonate cycles, consistent with records from pelagic areas of the eastern equatorial Atlantic, are encountered at Hole 959C prior to about 0.9 Ma. Total organic carbon (TOC) records are frequently inversely correlated to carbonate contents, indicating mainly productivity-driven carbonate dissolution related to changes in paleoproductivity. During Stages 22-24, 20, 16, 12, 8, and 4, sand and carbonate records reveal a 'Pacific-type' pattern, showing elevated contents during glacials commonly in conjunction with enhanced TOC records. Formation of 'Pacific-type' patterns off the Ivory Coast/Ghana is attributed to drastically increased bottom-water intensities along the transform margin in accordance with results reported from the Walvis Ridge area. Short-term glacial/interglacial changes in paleoproductivity off the Ivory Coast/Ghana are to some extend recognizable during glacials prior to 1.7 Ma and interglacial Stages 21, 19, 13, 9, and 1. Enhanced coastal upwelling during interglacials is attributed to local paleoclimatic and oceanographic conditions off the Ivory Coast/Ghana. Quantitative estimates of marine organic carbon based on organic petrologic and d13Corg records reveal an offset in concentration ranging from 15% to 60%. Highest variabilities of both records are recorded since ~0.9 Ma. Discrepancies between the isotopic and microscopic records are attributed to an admixture of C4 plant debris approaching the eastern equatorial Atlantic via atmospheric dust. Terrestrial organic material likely originated from the grass-savannah-covered Sahel zone in central Africa. Estimated C4 plant concentrations and accumulation rates range from 10% to 37% and from almost zero to 0.006 g/cm**2/k.y., respectively. The strongest eolian supply to the northern Gulf of Guinea is indicated between 1.9 and 1.68 Ma and during glacial isotopic Stages 22-24, 20, 14, and 12. The presence of grass-type plant debris is further supported by organic petrologic studies, which reveal well-preserved cell tissues of vascular plants or tube-shaped, elongated terrestrial macerals showing different levels of oxidation.
Resumo:
We compare total and biogenic particle fluxes and stable nitrogen isotope ratios (d15N) at three mooring sites along a productivity gradient in the Canary Islands region with surface sediment accumulation rates and sedimentary d15N. Higher particle fluxes and sediment accumulation rates, and lower d15N were observed in the upwelling influenced eastern boundary region (EBC) compared to the oligotrophic sites north of Gran Canaria [European Station for Time-Series in the Ocean, Canary Islands (ESTOC]] and north of La Palma (LP). The impact of organic matter degradation and lateral particle advection on sediment accumulation was quantified with respect to the multi-year flux record at the ESTOC. Remineralisation of organic matter in the water column and at the sediment surface resulted in an organic carbon preservation of about 0.8% and total nitrogen preservation of about 0.4% of the estimated export production. Higher total and carbonate fluxes and accumulation rates in the lower traps and surface sediment compared to the upper traps indicated that at least 50% of the particulate matter at the ESTOC was derived from allochthonous sources. Low d15N values in the lower traps of the ESTOC and LP point to a source region influenced by coastal upwelling. We conclude from this study that the reconstruction of export production or nutrient regimes from sedimentary records in regions with strong productivity gradients might be biased due to the mixture of particles originating from autochthonous and allochthonous sources. This could result in an imprint of high productivity signatures on sedimentation processes in oligotrophic regions.
Resumo:
Characterization of sediment from Ocean Drilling Program Site 745, representing the East Kerguelen Ridge sediment drift, addresses important issues surrounding the timing of Miocene to present East Antarctic ice sheet stability and oceanic environmental change. Our results show three periods of greatly enhanced accumulation of Antarctic-derived sediment, at 6.4-5.9 Ma, 4.9-4.4 Ma and 1.1-0.8 Ma, potentially indicative of warmer, less stable ice sheets at these times. Conversely, the accumulation of Antarctic-derived material is comparatively less during the middle of the Pliocene warm epoch (4.8-3.2 Ma). The deep flow forming the Kerguelen drift was stronger during the latest Miocene and earliest Pliocene and has decreased in intensity continuously since then.
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 138 in the eastern equatorial Pacific Ocean were analyzed for variations in eolian accumulation rate and mean grain-size. Latitudinal and temporal patterns of these parameters showed important changes in the intensity of atmospheric circulation and eolian flux associated with the intertropical convergence zone (ITCZ) and suggested that eolian input parameters could be used to define its paleoposition through time. Modern atmospheric circulation in the equatorial region is weakest in the intertropical convergence zone and increases as the trade winds are approached to the north and south. Thus, the expected spatial pattern of eolian grain size would have the finest material deposited beneath the ITCZ and a coarsening of material in both directions away from this zone. Sediments from ODP Leg 138 show this pattern for much of the Pleistocene and Pliocene but, prior to about 4 Ma, begin to lose the northern coarse component suggesting that the ITCZ was located north of its present position during the late Miocene. Eolian flux records also show a latitudinal pattern of deposition associated with the position of the ITCZ that, similar to eolian grain-size variability, suggests a more northerly position of the ITCZ during the late Miocene. Overall, the regional input of eolian material to the equatorial Pacific has decreased throughout the late Neogene. This reduction in eolian input reflects climatic changes to relatively wetter conditions in the continental eolian source regions beginning during the late Pliocene.
Resumo:
Piston cores from fiords, shelf troughs, and the deep-sea off eastern Baffin Island, N.W.T., Canada, have been sampled for texture and detrital carbonate in the <2 mm fraction. The sediments consist primarily of silty clays usually containing <5% sand. Estimates are made for sediment accumulation (kg/m**2/ka) over the last ca. 10 ka. Three sets, of two cores each, lie on a fiord-shelf transect and thus define variations in sediment accumulation gradients. These continental margin data are compared with cruder estimates of Holocene sediment accumulation at three sites farther offshore in Baffin Bay, Davis Strait and the northern Labrador Sea. Minimum accumulation in a 2 ka interval was 200 kg/m2 with a maximum estimate of 8,800 kg/m2. Detrital carbonate accumulation varies between 0 and 1,300 kg/m**2. Median accumulation for a typical fiord-shelf-deep-sea transect over the last 10 ka have been 10,340, 3493 and 820 kg/m**2. At DSDP Leg, site 645 in central Baffin Bay, the sedimentation rate ranged between 40 and 130 m/Ma (ca. 400 and 1200 kg/m**2/2ka); that is, comparable with the Late Quaternary input into Baffin Bay.
Resumo:
Since 1979/80, glaciological studies have been carried out at Ekströmisen, Antarctica, including accumulation-stake measurements, snow-pit and shallow-firn-core studies. Snowstratigraphy, chemical properties and stable-isotope ratios (d18O) were investigated. This study focuses on three cores taken between 1982 and 1998. The 1998 core was dated using dielectric profiling, d18O profiles and stake measurements. Accumulation rates showhigh interannual and spatial variability due to the extreme wind influence. No significant trend was found for the last 50 years; during the first half of the 20th century, accumulation decreased. The high spatial and interannual variability, however, means that trends must be interpreted with care. In spite of the highly irregular accumulation distribution, stable-isotope ratios show little spatial variability. The mean annual d18O values of cores B04 and FB0198 agree fairly well for the time period 1955-82 covered by both cores. d18O values have increased during most of the 20th century; since the late 1980s a decrease is observed. This change is not related to air temperature, since mean annual air temperatures at Neumayer show no significant trend over the last two decades.
Resumo:
Accumulation rates in the eastern part of Ronne Ice Shelf were determined by isotopic stratigraphy (18O). The samples were taken from snow-pits dug during the Filchner I and II operations in 1984 and 1986. In general, the accumulation rate decreases towards the south; the greatest decrease, from 21.3 to 13.3 g/cm**2/a, was observed between Filchner Station and measuring point 341, sited 270 km up-stream of the ice edge. The d18O values of the near-surface layers vary between -25 and -29 per mil. The 18O content in the more southerly part is progressively depleted in the direction of Möllereisstrom, paralleling a decrease in the accumulation rate. Near the ice edge the 18O content decreases to the west. A 100 m ice core drilled in 1984 at point 340, 22 km from the ice edge, probably goes back to A.D. 1460; it has been dated by isotopic stratigraphy. The accumulation rate up-stream of the drilling site was deduced from the sequence of annual layers, using a simple ice-flow model. The accumulation shows strong variations over the last 200 years, which may be caused in part by local variations in the accumulation on Ronne Ice shelf.
Resumo:
Manganese contents in reduced sediments and accumulation rates were investigated. Their values in sediments of most of cores are background (0.03-0.07 %).Anomalous concentrations (up to 2.5 %) and accumulation rates (up to 60 mg/cm**2/ka) occur near the known region of hydrothermal barite mineralization in the Derugin Basin. High accumulation rates of Mn (>10 mg/cm**2/ka) also occur in Holocene sediments to south-east from the Derugin Basin. It can be assumed that high Mn contents and accumulation rates occur there due to transportation of Mn-rich water from the Derugin Basin in the near-bottom layer under the lower border of the Sea of Okhotsk Intermediate Water. Intensive Mn accumulation is also typical for the South Okhotsk Basin near the Bussol Strait. Mn accumulation rates of glacial sediments of the second oxygen isotope stage are less significant, which is presumed to be caused by paleoceanological reasons.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.