204 resultados para Abtei Maria Laach.
Resumo:
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
Resumo:
The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10**-7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.
Resumo:
An incubation experiment at five different temperatures was used to assess the potential for adaptation of Calanus finmarchicus to future warming of the ocean. During a short term (3 h) and long term (6 day) exposure of individual females to a gradient of temperature stress, egg production and fecal pellet production were monitored to indicate secondary production and grazing rates. A longer term (10 day) exposure to elevated temperatures followed by a return to ambient sea temperatures was used to assess the potential recovery of individuals exposed to temperature stress. Females were picked out from WP2 net samples and acclimatised in 2 L bottles of GFF filtered seawater with Thalassiosira weissflogii as prey for >48 h at ambient SST. Experimental bottles were filled with filtered seawater (GFF filtered from non-toxic seawater supply) and acclimated to experimental temperature overnight (0, 5, 10, 15 and 20 °C). Individual females were transferred into bottles using forceps and the bottles were inoculated with T. weissflogii to a final concentration of 5 µg chl L-1. Bottles were then placed into water baths and incubated for 3h or 6 d, and monitored for egg and fecal pellet production rates. A 10 day exposure experiment was used to test the potential for recovery from temperature stress, by returning females incubated at 5, 10, 15 and 20 °C back to 10 °C for 24 h and counting egg and fecal pellet production.