355 resultados para ARGOS Location-only transmitter SPOT 2
Resumo:
Diversity of endolithic Dry Valley rock microorganisms was studied by evaluating the presence of morphotypes in enrichments. Storage of rock samples for 16 h over dry ice affected the diversity of endolithic organisms, especially that of algae and fungi. Diversity in various samples depended on rock location and exposure, on the rock type, and to some extent on the pH of the pulverized rock samples. In most cases sandstone contained more morphotypes than dolerite or granite. Presence of many different phototrophs resulted in greater diversity of the heterotrophs in the enrichments. Samples from Linnaeus Terrace and Battleship Promontory had higher morphotype (MT) numbers than those from more exposed sites such as New Mountain, University Valley, Dais, or Mt. Fleming. Beacon sandstone (13 samples) from Linnaeus Terrace varied greatly with respect to MT numbers, although the pH values ranged only from 4.2-5.3. The highest MT number of 24 per sample was obtained from the upper surface of a flat boulder tilted to the North. Only two MT's were found in a hard sandstone sample from the wind-exposed and more shaded east side of the Terrace. 15 sandstone samples from Battleship Promontory contained more diverse populations: there occurred a total of 131 different MT's in these samples as compared to only 68 in Linnaeus Terrace samples. Cysts of colorless flagellates were found in some Battleship Promontory samples; rnost samples were populated with a wealth of different cyanobacteria. Studies on the distribution of actinomycete morphotypes in Linnaeus Terrace sandstone revealed great differences between individual boulders. Identification tests and lipid analyses made with representative strains of the isolated 1500 pure cultures led to genus names such as Caulobacter, Blastobacter, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, Corynebacterium, Bifidobacterium, Mycobacterium, Nocardia (Amycolata), Micromonospora, Streptomyces, Blastococcus, and Deinococcus. Our data demonstrate the great diversity of Antarctic endolithic microbial populations.
Resumo:
Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are 'ropy' or 'rough' similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ~2000 m**2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.
Resumo:
NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.
Resumo:
The purpose of the present study was to explore the composition and variation of the pico-, nano- and micro-plankton communities in Norwegian coastal waters and Skagerrak, and the co-occurrence of bacteria and viruses. Samples were collected along three cruise transects from Jaeren, Lista and Oksoy on the south coast of Norway and into the North Sea and Skagerrak. We also followed a drifting buoy for 55 h in Skagerrak in order to observe diel variations. Satellite ocean color images (SeaWiFS) of the chlorophyll a (chl a) distribution compared favorably to in situ measurements in open waters, while closer to the shore remote sensing chl a data was overestimated compared to the in situ data. Using light microscopy, we identified 49 micro- and 15 nanoplankton sized phototrophic forms as well as 40 micro- and 12 nanoplankton sized heterotrophic forms. The only picoeukaryote (0.2-2.0 µm) we identified was Resultor micron (Pedinophyceae). Along the transects a significant variation in the distribution and abundance of different plankton forms were observed, with Synechococcus spp and autotrophic picoeukaryotes as the most notable examples. There was no correlation between viruses and chl a, but between viruses and bacteria, and between viruses and some of the phytoplankton groups, especially the picoeukaryotes. Moreover, there was a negative correlation between nutrients and small viruses (Low Fluorescent Viruses) but a positive correlation between nutrients and large viruses (High Fluorescent Viruses). The abundance of autotrophic picoplankton, bacteria and viruses showed a diel variation in surface waters with higher values around noon and late at night and lower values in the evening. Synechococcus spp were found at 20 m depth 25-45 nautical miles from shore apparently forming a bloom that stretched out for more than 100 nautical miles from Skagerrak and up the south west coast of Norway. The different methods used for assessing abundance, distribution and diversity of microorganisms yielded complementary information about the plankton community. Flow cytometry enabled us to map the distribution of the smaller phytoplankton forms, bacteria and viruses in more detail than has been possible before but detection and quantification of specific forms (genus or species) still requires taxonomic skills, molecular analysis or both.
Resumo:
The family Munnopsidae was the most abundant and diverse among 22 isopod families collected by the ANDEEP deep-sea expeditions in 2002 and 2005 in the Atlantic sector of the Southern Ocean. A total of 219 species from 31 genera and eight subfamilies were analysed. Only 20% species were known to science, and 11% of these were reported outside the ANDEEP area mainly from other parts of the SO or the South Atlantic deep sea. One hundred and five species (50%) were rare, occurring at only 1 or 2 stations. Seventy-two percent of all munnopsid specimens belong to the most numerous 25 species with a total abundance of more than 75 specimens; 5 of these species (40% of all specimens) belong to the main genera of the world munnopsid fauna, Eurycope, Disconectes, Betamorpha, and Ilyarachna. About half of all munnopsid specimens and 34% of all species belong to the subfamily Eurycopinae, which is followed in occurrence by the Lipomerinae (19%). Munnopsinae is the poorest represented subfamily (1.5%). The composition of the subfamilies for the munnopsid fauna of the ANDEEP area differs from that of northern faunas. Lipomerinae show a lower percentage (7%) in the North Atlantic and are absent in the Arctic and in the North Pacific. This subfamily is considered as young and having a centre of origin and diversification in the Southern Ocean. The analyses of the taxonomic diversity and the distribution of Antarctic munnopsids and the distribution of the world fauna of all genera of the family revealed that species richness and diversity of the genera are highest in the ANDEEP area. The investigated fauna is characterised also by high percentage of endemic species, the highest richness and diversity of the main munnopsid genera and subfamily Lipomerinae. This supports the hypothesis that the Atlantic sector of SO deep sea may be considered as the main contemporary centre of diversification of the Munnopsidae. It might serve as a diversity pump of species of the Munnopsidae to more northern Atlantic areas via the deep water originating in the Weddell Sea.
Resumo:
A wide-angle seismic experiment at the Atlantis II Fracture Zone, Southwest Indian Ridge, together with geochemical analyses of dredged basalt glass samples from a site conjugate to Ocean Drilling Program hole 735B has allowed determination of the thickness and the most likely lithological composition of the crust beneath hole 735B. The measured Na, composition of 3.3 +/- 0.1 corresponds to a melt thickness of 3 +/- 1 km, a result consistent with rare earth element inversions which indicate a melt thickness of between 1.5 and 4.5 km. The seismic crustal thickness to the north and south of the Atlantis Platform (on which hole 735B is located) is 4 +/- 1 km, and probably consists largely of magmatic material since the seismic and inferred melt thicknesses agree within experimental uncertainty. Beneath hole 735B itself. the Moho is at a depth of 5 +/- 1 km beneath the seafloor. The seismic model suggests that, on average. about 1 km of upper crust has been unroofed on the Atlantis Platform. However, allowing for the inferred local unroofing of 2 km of upper crust at 735B, the base of the magmatic crust beneath this location is probably about 2 km beneath the seafloor, and is underlain by a 2-3 km thick layer of serpentinised mantle peridotite. The P-wave velocity of 6.9 km/s for the serpentinised peridotite layer corresponds to a 35 +/- 10 vol% serpentine content. The Moho beneath hole 735B probably represents a serpentinisation front.
Resumo:
The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.
Resumo:
We analysed long-chain alkenones in sinking particles and surface sediments from the filamentous upwelling region off Cape Blanc, NW Africa, to evaluate the transfer of surface water signals into the geological record. Our study is based on time-series sediment trap records from 730 m (1990-1991) to 2195-3562 m depth (1988-1991). Alkenone fluxes showed considerable interannual variations and no consistent seasonality. The average flux of C37 and C38 alkenones to the deep traps was 1.9 µg/m**2/d from March 1988 to October 1990 and sevenfold higher in the subsequent year. Alkenone fluxes to the shallower traps were on average twice as high and showed similar temporal variations. The alkenone unsaturation indices UK'37, UK38Me and UK38Et closely mirrored the seasonal variations in sea-surface temperature (weekly Reynolds SST). Time lags of 10-48 days between the SST and unsaturation maxima suggest particle sinking rates of about 80 and 280 m/d for the periods of low and high alkenone fluxes, respectively. The average flux-weighted UK'37 temperature for the 4-year time series of the deeper traps was 22.1°C, in perfect agreement with the mean weekly SST for the same period. This and the comparison with seasonal temperature variations in the upper 100 m of the water column suggests that UK'37 records principally the yearly average of the mixed-layer temperature in this region. A comparison between the average annual alkenone fluxes to the lower traps (2400 µg/m**2/yr) and into the underlying sediments (4 µg/m**2/yr) suggests that only about 0.2% of the alkenones reaching the deep ocean became preserved in the sediments. The flux-weighted alkenone concentrations also decreased considerably, from 2466 µg/gC in the water column to 62 µg/gC in the surface sediments. Such a low degree of alkenone preservation is typical for slowly accumulating oxygenated sediments. Despite these dramatic diagenetic alkenone losses, the UK'37 ratio was not affected. The average UK'37 value of the sediments (0.796±0.010 or 22.3±0.3°C) was identical within error limits to the 4-year average of the lower traps. The unsaturation indices for C38 alkenones and the ratio between C37 and C38 alkenones also revealed a high degree of stability. Our results do not support the hypothesis that UK'37 is biased towards higher values during oxic diagenesis.
Resumo:
An inflatable drill-string packer was used at Site 839 to measure the bulk in-situ permeability within basalts cored in Hole 839B. The packer was inflated at two depths, 398.2 and 326.9 mbsf; all on-board information indicated that the packer mechanically closed off the borehole, although apparently the packer hydraulically sealed the borehole only at 398.2 mbsf. Two pulse tests were run at each depth, two constant-rate injection tests were run at the first set, and four were run at the second. Of these, only the constant-rate injection tests at the first set yielded a permeability, calculated as ranging from 1 to 5 * 10**-12 m**2. Pulse tests and constant-rate injection tests for the second set did not yield valid data. The measured permeability is an upper limit; if the packer leaked during the experiments, the basalt would be less permeable. In comparison, permeabilities measured at other Deep Sea Drilling Project and Ocean Drilling Program sites in pillow basalts and flows similar to those measured in Hole 839B are mainly about 10**-13 to 10**-14 m**2. Thus, if our results are valid, the basalts at Site 839 are more permeable than ocean-floor basalts investigated elsewhere. Based on other supporting evidence, we consider these results to be a valid measure of the permeability of the basalts. Temperature data and the geochemical and geotechnical properties of the drilled sediments all indicate that the site is strongly affected by fluid flow. The heat flow is very much less than expected in young oceanic basalts, probably a result of rapid fluid circulation through the crust. The geochemistry of pore fluids is similar to that of seawater, indicating seawater flow through the sediments, and sediments are uniformly underconsolidated for their burial depth, again indicating probable fluid flow. The basalts are highly vesicular. However, the vesicularity can only account for part of the average porosity measured on the neutron porosity well log; the remainder of the measured porosity is likely present as voids and fractures within and between thin-bedded basalts. Core samples, together with porosity, density, and resistivity well-log data show locations where the basalt section is thin bedded and probably has from 15% to 35% void and fracture porosity. Thus, the measured permeability seems reasonable with respect to the high measured porosity. Much of the fluid flow at Site 839 could be directed through highly porous and permeable zones within and between the basalt flows and in the sediment layer just above the basalt. Thus, the permeability measurements give an indication of where and how fluid flow may occur within the oceanic crust of the Lau Basin.
Resumo:
Carbon isotopic records of nutrient-depleted surface water place constraints on the past fertility of the oceans and on past atmospheric pCO2 levels. The best records of nutrient-depleted delta13C are obtained from planktonic foraminifera living in the thick mixed layers of the western equatorial and tropical Atlantic Ocean. We have produced a composite, stacked Globigerinoides sacculifer delta13C record from the equatorial Atlantic, which exhibits significant spectral power at the 100,000- and 41,000-year Milankovitch periods, but no power at the 23,000-year period. Similar to the record presented by Shackleton and Pisias [1985], surface-deep ocean Delta delta13C produced with the G. sacculifer record leads the delta18O ice volume record. However, the glacial-interglacial amplitudes of Delta delta13C differ between our record and Shackleton and Pisias [1985] record. Although large changes in Delta delta13C occur in the equatorial Atlantic during early stages of the last three glacial cycles, surface-deep Delta delta13C at glacial maxima (18O stage 2, late stage 6, and late stage 8) was only about 0.2? greater than during the subsequent interglacial. Our results imply that nutrient-driven pCO2 changes account for about one third of the pCO2 decrease observed in ice cores, and consequently, Delta delta13C should not be used as a proxy pCO2 index. Enough variance in the ice core pCO2 records remains to be explained that conclusions about pCO2 and ice volume phase relationships should also be reexamined. As much as 40 ppm pCO2 change still has not been accounted for by models of past physics and chemistry of the ocean.