528 resultados para 836


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cr-spinels in cores drilled during Ocean Drilling Program Leg 135 exhibit wide variations in composition and morphology that reflect complex petrogenetic histories. These Cr-spinels are found within basaltic lava flows that erupted in north-trending sub-basins within the Lau Basin backarc. Cr-spinels from Sites 834 and 836 occur as euhedral groundmass grains and inclusions in plagioclase, and range up to 300 ?m in size. These Cr-spinels are similar in composition, morphology, and mode of occurrence to Cr-spinels found within depleted, N-type mid-ocean-ridge basalts (N-MORB), reflecting similar crystallization conditions and host lava composition to N-MORB. Their compositional range is relatively narrow, with Cr/(Cr + Al + Fe3+) (Cr#) and Mg/(Mg + Fe2+) (Mg#) varying from 0.38 to 0.48 and 0.56 to 0.72, respectively; like Cr-spinels from N-MORB, they contain low amounts of TiO2 (0.37%-1.05%) and Fe3+/(Cr + Al + Fe3+) (Fe3+#; <0.11). In contrast, Cr-spinels from Site 839 have much higher Cr# at a given Mg#, with Cr# varying from 0.52 to 0.76 and Mg# varying from 0.27 to 0.75. These Cr-spinels are similar in composition to those from primitive, boninitic or low-Al2O3 arc basalts, sharing their low TiO2 and Fe3+# (typically below 0.35% and 0.1, respectively for spinel grain interiors). Site 839 Cr-spinels occur as small (to 50 µm) euhedra within strongly zoned olivine or as unusually large (to 3 mm), euhedral to subhedral megacrysts. These megacrysts are strongly zoned in Mg#, but they display little zoning in Cr#, providing evidence of strong compositional disequilibria with the host melt. The magnesian cores of the megacrysts crystallized from primitive, near-primary melts derived from harzburgitic or highly depleted lherzolitic sources, and they provide evidence that the Site 839 spinel-bearing lavas were derived by the mixing of melt with a Mg# of 0.75-0.80 and evolved, Cr-spinel barren melt with a Mg# < 0.6 shortly before eruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of fluid flux on petrogenesis in the Tonga-Kermadec Arc was investigated using ion microprobe measurements of B/Be and boron isotope ratios (11B/10B) to document the source and relative volumes of the fluids released from the subducting oceanic plate. We analyzed young lavas from eight different islands along the Tonga-Kermadec Arc, as well as glass shards in volcanic sediments from Ocean Drilling Program (ODP) Site 840, which record the variations in the chemistry of Tonga magmatism since 7 Ma. B/Be is variable (5.8-122), in young Tonga-Kermadec Arc lavas. In contrast, glass shards from around 3 to 4 Ma old volcanic sediments at Site 840 have the highest B/Be values yet reported for arc lavas (18-607). These values are too high to be related simply to a sediment influence on petrogenesis. Together with very high d11B values (-11.6 to +37.5) for the same shards and lavas these data indicate that most of the B is derived from fluid escaped from the subducting altered Pacific oceanic crust, rather than from sediment. High d11B values also reflect large degrees of isotopic fractionation in this cold fast subduction zone. Lower d11B values noted in the Kermadec Arc (17 to -4.4) are related to the influence of sediment eroded from New Zealand and slower convergence. High fluid flux (B/Be) is synchronous in Tonga and the Marianas at 3 to 4 Ma and may be related to acceleration of the Pacific Plate just prior to this time. The timing of maximum B/Be at 3 to 4 Ma correlates with maximum light rare earth (LREE) and high field strength element depletion. This suggests maximum degrees of partial melting at this time. Although thinning of the arc lithosphere during rifting to form the Lau Basin is expected to influence the arc geochemistry, variable aqueous fluid flux from the subducting plate alone appears capable of explaining boron and other trace element systematics in the Tonga-Kermadec Arc with no indication of slab melting.