359 resultados para 811
Resumo:
Background: Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Results: Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. Conclusions: This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Resumo:
Data presented in the paper suggest significant differences between thermodynamic conditions, under which magmatic complexes were formed in MAR at 29°-34°N and 12°-18°N. Melts occurring at 29°-34°N were derived by melting of a mantle source with homogeneous distribution of volatile components and arrived at the surface without significant fractionation, likely, due to their rapid ascent. The MAR segments between 12° and 18°N combine contrasting geodynamic environments of magmatism, which predetermined development of a large plume region with widespread mixing of melting products of geochemically distinct mantle sources. At the same time, this region is characterized by conditions favorable for origin of localized zones of anomalous plume magmatism. These sporadic magmatic sources were spatially restricted to MAR fragments with the Hess crust, whose compositional and mechanical properties were, perhaps, favorable for focusing and localization of plume magmatism. The plume source between 12° and 18°N beneath MAR may be geochemically heterogeneous.
Resumo:
The biostratigraphic distribution and abundance of Eocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program Leg 120 Holes 747A, 748A, 748B, 749B, and 751A on the Central Kerguelen Plateau. Well-preserved silicoflagellates are reported here from the middle Eocene Dictyocha grandis Zone to the Pleistocene Distephanus speculum speculum Zone. Assemblage diversity and abundance is variable, with many intervals either barren of silicoflagellates or containing only limited numbers.
Resumo:
Utilizing the neutron-irradiation parameter J is one of the major uncertainties in 40Ar/39Ar dating. The associated error of the individual J-value for a sample of unknown age depends on the accuracy of the age of the geological standards, the fast-neutron fluence distribution in the reactor and the distances between standards and samples during irradiation. While it is generally assumed that rotating irradiation evens out radial neutron fluence gradients, we observed axial and radial variations of the J-values in sample irradiations in the rotating channels of two reactors. To quantify them, we included three-dimensionally distributed metallic fast- (Ni) and thermal- (Co) neutron fluence monitors in three irradiations and geological age standards in three more. Two irradiations were carried out under Cd-shielding in the FRG1 reactor in Geesthacht, Germany, and four without Cd-shielding in the LVR-15 reactor in Rez, Czech Republic. The 58Ni(nf,p)58Co activation reaction and ?-spectrometry of the 811 keV peak associated with the subsequent decay of 58Co to 58Fe allow to calculate the fast-neutron fluence. The fast-neutron fluences at known positions in the irradiation container correlate with the J-values determined by mass-spectrometric 40Ar/39Ar measurements of the geological age standards. Ra-dial neutron fluence gradients are up to 1.8 %/cm in FRG1 and up to 2.2 %/cm in LVR-15; the corre-sponding axial gradients are up to 5.9 and 2.1 %/cm. We conclude that sample rotation might not al-ways suffice to meet the needs of high-precision dating and gradient monitoring can be crucial.
Meteorological observations during El Colon cruise from La Coruña to La Habana started at 1766-03-11
Resumo:
A Monte Carlo based radiative transfer model has been developed for calculating the availability of solar radiation within the top 100 m of the ocean. The model is optimized for simulations of spatial high resolution downwelling irradiance Ed fluctuations that arise from the lensing effect of waves at the water surface. In a first step the accuracy of simulation results has been verified by measurements of the oceanic underwater light field and through intercomparison with an established radiative transfer model. Secondly the potential depth-impact of nonlinear shaped single waves, from capillary to swell waves, is assessed by considering the most favorable conditions for light focusing, i.e. monochromatic light at 490 nm, very clear oceanic water with a low chlorophyll a content of 0.1 mg/m**3 and high sun elevation. Finally light fields below irregular wave profiles accounting for realistic sea states were simulated. Our simulation results suggest that under open ocean conditions light flashes with 50% irradiance enhancements can appear down to 35 m depth, and light variability in the range of ±10% compared to the mean Ed is still possible in 100 m depth.