464 resultados para 70-504B
Resumo:
More than 60 basalt samples from two Deep Sea Drilling Project holes on the Costa Rica Rift were studied for magnetic properties and were found to have no properties significantly different from other DSDP basalts. Opaque mineralogical and thermomagnetic properties of these samples, however, to some extent show differences from normal submarine basalts; a new type of thermomagnetic curve and wide range of chemical compositions were recognized. Oxidized samples possibly containing incipient ilmenite exsolution lamellae were reduced and re-equilibrated during heating. The Curie temperatures of the re-equilibrated titanomagnetites are interpreted to be those of the original crystallized phase before oxidation.
(Table 1) Compressional and shear wave velocities and elastic constants of DSDP Hole 83-504B basalts
Resumo:
Compressional and shear wave velocities at confining pressures to 6 kb, densities, and porosities were measured for 32 samples obtained from 836 to 1350 m below seafloor (BSF) in Hole 504B, the section drilled on Leg 83 of the Deep Sea Drilling Project. These data in combination with similar measurements on 28 basalt samples from the section from 274.5 to 836 m, drilled on Legs 69 and 70, provide a comprehensive set of physical property data for over 1000 m of oceanic crust. The velocities, densities, and porosities measured in the laboratory exhibit greater variability in the upper portion of the hole. In general, compressional and shear wave velocities and densities increase with depth, reaching average values at 1 kbar of Vp = 6.45 km/s, Ks = 3.45 km/s and p = 2.94 g/cm3 within the sheeted dike section. Porosities decrease with depth to values generally less than 1% near the bottom of the hole
Resumo:
Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.
Resumo:
Basalts from Hole 504B, Leg 83, exhibit remarkable uniformity in major and trace element composition throughout the 1075.5 m of basement drilled. The majority of the basalts, Group D', have unusual compositions relative to normal (Type I) mid-ocean ridge basalts (MORB). These basalts have relatively high mg values (0.60-0.70) and CaO abundances (11.7-13.7%; Ca/Al = 0.78-0.89), but exhibit a marked depletion in compatible trace elements (Cr and Ni); moderately incompatible trace elements (Zr, Y, Ti, etc.); and highly incompatible trace elements (Nb, LREE, etc.). Petrographic and compositional data indicate that most of these basalts are evolved, having fractionated significant amounts of plagioclase, olivine, and clinopyroxene. Melting experiments on similar basalt compositions from the upper portion of Hole 504B (Leg 70; Autio and Rhodes, 1983) indicate that the basalts are co-saturated with olivine and plagioclase and often clinopyroxene on the 1-atm. liquidus. Two rarely occurring groups, M' and T, are compositionally distinct from Group D' basalts. Group T is strongly depleted in all magmaphile elements except the highly incompatible ones (Nb, La, etc.), while Group M' has moderate concentrations of both moderately and highly incompatible trace elements and is similar to Type I MORB. Groups M' and T cannot be related to Group D' nor to each other by crystal fractionation, crystal accumulation, or magma mixing. The large differences in magmaphile element ratios (Zr/Nb, La/Yb) among these three chemical groups may be accounted for by complex melting models and/or local heterogeneity of the mantle beneath the Costa Rica Ridge. Xenocrysts and xenoliths of plagioclase and clinopyroxene similar in texture and mineral composition to crystals in coarse-grained basalts from the lower portion of the hole are common in Hole 504B basalts. These suggest that addition of solid components either from conduit or magma chamber walls has occurred and may be a common source of disequilibrium crystals in these basalts. However, mixing of plagioclase-laden depleted melts (similar to the Costa Rica Ridge Zone basalts) with normal MORB magmas could provide an alternate source for some refractory plagioclase crystals found out of equilibrium in many phyric MORB. The uniformity of major element compositions in Hole 504B basalts affords an ideal situation for investigating the effects of alteration on some major and trace elements in oceanic basalts. Alteration observed in whole-rock samples records primarily two events - a high-temperature and a low-temperature phase. High-temperature phases include: chlorite, talc, albite, actinolite, sphene, quartz, and pyrite. The low-temperature phases include smectite (saponite), epistilbite or laumontite, and minor calcite. Laumontite may actually straddle the gap between the low- and high-temperature mineral assemblages. Alteration is restricted primarily to partial replacement of primary phases. Metamorphic grade, in general, increases from the top to the bottom of Hole 504B (Legs 69, 70, and 83) as seen in the change from a smectiteto- chlorite-dominated secondary mineral assemblage. However, a systematic progression for the interval recovered during Leg 83 is not apparent. Rather, the extent of alteration appears to be a function of the initial texture and fracture density. Variations in whole-rock major and trace element concentrations cannot be attributed convincingly to any differences in alteration observed. Compositional characteristics of the secondary minerals indicated that extensive remobilization of elements has not occurred; local redistribution is suggested in most cases. Thus, the major and trace element signature of these basalts remains effectively the same as the original composition prior to alteration.
Resumo:
Mineral and whole-rock geochemical data are presented for chilled dike margins from the lower sheeted dike complex of Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) Hole 504B. Compositions of phenocrystic plagioclase (An80-89); olivine (Fo82-86); clinopyroxene (Wo52En40Fs8, with Cr2O3 up to 1.2%); and rare chromian spinel (Cr# 43) are consistent with those from the lavas and the upper dike complex recovered previously (DSDP Legs 69, 70, 83, and ODP Leg 111). Major and trace element compositions fall in group D of Autio and Rhodes (1983) and have high CaO/Na2O, and low TiO2, K2O, and (La/Sm)N values consistent with previous analyses from this site.
Resumo:
The achievement of deep penetration (562 m) of seafloor basalts at Hole 504B, near the Costa Rica Rift (1°13.63'N, 83°43.81'W), on DSDP Legs 69 and 70 presented a rare opportunity to examine the structure of young (6 m.y.) oceanic crust. In addition to the recovery of samples for laboratory studies, an extensive suite of downhole logs and experiments was carried out at this site, for two main purposes: (1) to allow reliable deductions about the nature of the entire section of penetrated crust, because recovery of samples was far from complete (-25%); (2) to probe the physical state of rock around the drilled hole on a scale of tens of meters to kilometers. Information on the latter large-scale phenomena at Hole 504B were provided mainly by the oblique seismic experiment, utilizing a bore-hole seismometer (Stephen 1983), and by the large-scale-electrical- resistivity experiment described below.
Resumo:
Fifty samples of basalt recovered during ODP Leg 111 from the dikes (Layer 2C) of Hole 504B (1350.0-1562.3 m below seafloor) were analyzed by X-ray-fluorescence techniques. All of the samples are highly depleted in magmaphile elements relative to other mid-ocean ridge basalts, with TiO2 = 0.75-1.24 wt%, Na2O = 1.59-2.22 wt%, Zr = 38-64 ppm, Nb = 0.3-1.5 ppm, and Y = 20-30 ppm (for samples containing 0%-2% phenocrysts), but have ratios of highly incompatible elements similar to normal Type I mid-ocean ridge basalts (e.g., Zr/Nb > 30). Abundances of compatible elements are similar to those of typical mid-ocean ridge basalts, with MgO = 7.2-9.2 wt%, Fe2O3* = 9.3-12.5 wt%, Ni = 55-164 ppm, and Cr = 26-388 ppm. Approximately 2% of the samples recovered from the top part of Hole 504B are similar to normal Type I or Type II ocean floor basalts. However, all of the analyzed Leg 111 samples from Hole 504B are depleted basalts. Aphyric dike rocks from Leg 111 are virtually identical to the depleted aphyric samples recovered from the pillow lavas and dikes in the upper 1075 m of Hole 504B during DSDP Legs 69, 70, and 83, with the exception of elements readily altered by seawater (Sr, Rb, and K). These elements reach a maximum in both abundance and variability in the pillow lavas of the upper 571.5 m of Hole 504B and decline to more constant values in the dike system sampled on Legs 83 and 111, apparently as a result of a decrease in porosity and increase in alteration temperatures relative to the pillow lavas. Based on compositional similarities to the vast majority of the pillows and flows, the dikes sampled on Leg 111 appear to be the feeder system for the pillow lavas in the upper part of Hole 504B. The incompatible-element-depleted compositions of the Costa Rica Rift Zone basalts are consistent with multistage melting of a normal mid-ocean ridge source.
Resumo:
Downhole magnetic field measurements were conducted in Hole 504B on the Costa Rica Ridge during ODP Leg 111. Three magnetic groups within oceanic basement at this site are tentatively defined, based on the interval mean values of the downhole magnetic field. Statistical analyses show that there are significant differences in the inclinations of natural remanent magnetization (NRM) among the three magnetic groups. Although this could be caused by various factors, we explain the inclination difference among the three groups by simple tectonic displacements of basement by faulting after its formation, about 5.9 Ma ago. Based on the intensities of NRM and inclinations measured in the basement core samples drilled in Hole 504B on DSDP Legs 69, 70, and 83 and ODP Leg 111, the investigated section of basement formation can be divided into three or four magnetic zones that parallel the zones defined by the downhole magnetic field, alteration, and lithology. Downhole magnetic field and paleomagnetic data generally correlate positively, in spite of some discrepancies. The magnetic susceptibility values of the core samples were used to derive the insitu NRM from the downhole magnetic field data.
Resumo:
Basalt formation waters collected from Hole 504B at sub-basement depths of 194, 201, 365, and 440 meters show inverse linear relationships between 87Sr/86Sr and Ca, 87Sr/86Sr and Sr, and K and Ca. If the Ca content of a fully reacted formation water end-member is assumed to be 1340 ppm, the K, Sr, and 87Sr/86Sr values for the end-member are 334 ppm, 7.67 ppm, and 0.70836, respectively. With respect to contemporary seawater at Hole 504B, K is depleted by 13%, Sr is enriched by 2.7%, and 87Sr/86Sr is depleted by 0.8%. The Sr/Ca ratio of the formation water (0.0057) is much lower than that of seawater (0.018) but is similar to the submarine hot spring waters from the Galapagos Rift and East Pacific Rise and to geothermal brines from Iceland. At the intermediate temperatures represented by the Hole 504B formation waters (70°-105°C), the interaction between seawater and the ocean crust produces large solution enrichments in Ca, the addition of a significant basalt Sr isotope component accompanied by only a minor elemental Sr component, and the removal from solution of seawater K. The Rb, Cs, and Ba contents of the formation waters appear to be affected by contamination, possibly from drilling muds.
Resumo:
Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.