153 resultados para 59.19(79.8)
Resumo:
The tuna stomach database from AZTI-Tecnalia corresponds to 7 years of sampling from 2004 to 2011. Due to the absence of continuity in the different projects dealing with the feeding ecology of tunas, the sampling could not be performed every year for both species, and no sample was collected in 2008. However, the fish stomach content record contents composition - by prey weight - of 1525 albacore caught in the Bay of Biscay and surrounding waters of the North Atlantic Drift Region in 2005 (n=397), 2006 (n=196), 2007 (n=37), 2009 (n=95), 2010 (n=566) and 2011 (n=234) ; and of 686 bluefin tunas caught in the Southeastern Bay of Biscay in 2004 (n=32), 2005 (n=36), 2006 (n=3), 2009 (n=257), 2010 (n=233) and 2011 (n=125). Samples have been obtained from scientific research surveys (using a variety of different fishing gears), from commercial fisheries catches, from individual fish voluntarily sampled by recreational fishermen and from fish accidentally stranded on coastlines. Each predator is identified by an ID and its length and wet weight are given. In case the wet weight could not be measured, it was estimated through a length-weight relationship equation and is indicated in the comment for the Predator mass column. The total weight of each prey is given, as well as the weight of each prey taxonomic group in each stomach.
Resumo:
Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.