561 resultados para 2 sigma


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as ?13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 125 recovered serpentined harzburgites and dunites from a total of jive sites on the crests and flanks of two serpen finite seamounts, Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. These are some of the first extant forearc peridotites reported in the literature and they provide a window into oceanic, supra-subduction zone (SSZ) mantle processes. Harzbutrgites from both seamounts are very refractory with low modal clinopyroxene (<4%), chrome-rich spinels (cx-number = 0.40-0.80), very low incompatible element contents, and (with the exception of amphibole-bearing samples) U-shaped rare earth element (REE) profiles with positive Eu anomalies. Both sets of peridotites have olivine-spinel equilibration temperatures that are low compared with abyssal peridotites, possibly because of water-assisted diffusional equilibration in the SSZ environment However, other features indicate that the harzburgites from the two seamounts have very different origins. Harzburgites from Conical Seamount are characterized by calculated oxygen fugacities between FMQ (fayalite- magnetite- quartz) - 1.1 (log units) and FMQ + 0.4 which overlap those of mid-ocean ridge basalt (MORB) peridotites. Dunites from Conical Seamotmt contain small amounts of clinopyroxene, orthopyroxene and amphibole and are light REE (LREE) enriched. Moreover; they are considerably more oxidized than the harzburgites to which they are spatially related, with calculated oxygen fugacities of FMQ -0.2 toFMQ + 1.2. Using textural and geochemical evidence, we interpret these harzburgites as residual MORB mantle (from 15 to 20 % fractional melting) which has subsequently been modified by interaction with boninitic melt ivithin the mantle wedge, and these dunites as zones of focusing of this melt in which pyroxene has preferentially been dissolved from the harzbutgite protolith. In contrast, harzburgites from Torishima Forearc Seamount give calculated oxygen fugacities between FMQ + 0.8 and FMQ + l.6, similar to those calculated for other subduction-zone related peridotites and similar to those calculated for the dunites (FMQ + 1.2 to FMQ + 1.8) from the same seamount. In this case, we interpret both the harzburgites and dunites as linked to mantle melting (20-25 % fractional melting) in a supra-subduction zone environment The results thus indicate that the forearc is underlain by at least two types of mantle lithosphere, one being trapped or accreted oceanic lithosphere, the other being lithosphere formed by subduction-related melting. They also demonstrate that both types of mantle lithosphere may have undergone extensive interaction with subduction-derived magmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the latest Paleocene an abrupt shift to more negative d13C values has been documented at numerous marine and terrestrial sites (Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Cramer et al., 1999; Kaiho et al., 1996, doi:10.1029/96PA01021; Kennett and Stott, 1991, doi:10.1038/353225a0; Koch et al., 1992, doi:10.1038/358319a0; Stott et al., 1996; Thomas and Shackleton, 1996, doi:10.1144/GSL.SP.1996.101.01.20; Zachos et al., 1993). This carbon isotope event (CIE) is coincident with oxygen isotope data that indicate warming of surface waters at high latitudes of nearly 4°-6°C (Kennett and Stott, 1991, doi:10.1038/353225a0) and more moderate warming in the subtropics (Thomas et al., 1999, doi:10.1029/1999PA900031). Here we report 187Os/188Os isotope records from the North Atlantic and Indian Oceans which demonstrate a >10% increase in the 187Os/188Os ratio of seawater coincident with the late Paleocene CIE. This excursion to higher 187Os/188Os ratios is consistent with a global increase in weathering rates. The inference of increased chemical weathering during this interval of unusual warmth is significant because it provides empirical evidence supporting the operation of a feedback between chemical weathering rates and warm global climate, which acts to stabilize Earth's climate (Walker et al., 1981). Estimates of the duration of late Paleocene CIE (Bains et al., 1999, doi:10.1126/science.285.5428.724; Bralower et al., 1997, doi:10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2; Norris and Röhl, 1999, doi:10.1038/44545; Röhl et al., 2000, doi:10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2) in conjunction with the Os isotope data imply that intensified chemical weathering in response to warm, humid climates can occur on timescales of 104-105 years. This interpretation requires that the late Paleocene thermal maximum Os isotope excursion be produced mainly by increased Os flux to the ocean rather than a transient excursion to higher 187Os/188Os ratios in river runoff. Although we argue that the former is more likely than the latter, we cannot rule out significant changes in the 187Os/188Os ratio of rivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes of sea surface temperature (SST) in the subarctic NE Pacific over the last 16,000 calendar years before present (16 kyr BP) have been inferred from the study of C37 alkenone unsaturation in a sediment core from the western Canadian continental slope. Between 16.0 and 11.0 kyr, three distinct cold phases (6-7°C) interrupt two warmer periods (9-10°C). Within the 2sigma range of the radiocarbon based time control, the observed SST oscillations correspond to the Oldest Dryas, the Bolling, the Older Dryas, the Allered, and the Younger Dryas periods in the GISP2 d180 record. These results represent the first high resolution marine paleotemperature estimates off the northern West coast of North America and imply that the climate of this region may be very strongly coupled to that of the North Atlantic. Given the fast rates of SST change (1°C/40-80 yr), such coupling must be controlled by atmospheric transmission of the climate signal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed profiles of the Sr isotopic compositions of fossil planktonic foraminifers and interstitial waters have been measured from DSDP Site 593 to determine the Sr isotopic composition of seawater during the last 40 m.y. Foraminiferal recrystallization was assessed through scanning electron microscopy (SEM) and Sr/Ca ratios. Foraminifers were shown to be well preserved. Results document that the seawater 87Sr/86Sr has increased continuously but not uniformly, since the latest Eocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Kerguelen Plateau and Broken Ridge in the southern Indian Ocean together represent one of the most voluminous large igneous provinces (LIPs) ever emplaced on Earth. A scientific objective of Ocean Drilling Program (ODP) Leg 183 was to constrain the post-melting magma evolution of Kerguelen Plateau magmas. In an effort to better understand this evolution, isotopic and trace element analysis of individual plagioclase crystals hosted within two Kerguelen Plateau basalts recovered from Elan Bank were undertaken. Previous whole-rock studies established that the two host basalts investigated in this study are samples of crustally contaminated (lower group) and relatively uncontaminated (upper group) basalt. Plagioclase phenocrysts from the uncontaminated basalt are dominantly normal zoned and exhibit a 87Sr/86SrI range of 0.704845-0.704985, which overlaps uncontaminated group whole-rock values previously reported. Plagioclase crystals from the contaminated basalt are dominantly reverse zoned and exhibit a 87Sr/86SrI range of 0.705510-0.705735, which all lie within contaminated group whole-rock values previously reported. There are no systematic within crystal core to rim variations in 87Sr/86SrI from either group, with the exception that contaminated group crystal rims have overall less radiogenic 87Sr/86SrI than other zones. These observations indicate that crustal assimilation occurred before the formation of Unit 10 plagioclase phenocrysts, which is supported by parent magma trace element abundance data inverted using carefully calculated partition coefficients. Trace element diffusion modeling indicates that the upper group basalt (Unit 4) experienced a more vigorous eruptive flux than the lower group basalt (Unit 10). We suggest that plagioclase phenocrysts in both the upper and lower group basalts originated from the shallowest section of what was likely a complex magma chamber system. We contend that the magmatic system contained regions of extensive plagioclase-dominated crystal mush. Crustal assimilation was not a significant ongoing process in this portion of the Elan Bank magmatic system. Both basalts exhibit compelling evidence for remobilization and partial resorption of crystalline debris (e.g., reverse zoned crystals, glomerocrysts). We suggest Unit 4 and 10 magmas ascended different sections of the Elan Bank magma system, where the Unit 10 magmas ascended a section of the magma system that penetrated a stranded fragment of continental crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high-resolution multiproxy study performed on a marine record from SE Pacific off southern South America was used to reconstruct past regional environmental changes and their relation to global climate, particularly to El Niño/Southern Oscillation (ENSO) phenomenon during the last 2200 years. Our results suggest a sustained northward shift in the position of the zonal systems, i.e. the Southern Westerly Wind belt and the Antarctic Circumpolar Current, which occurred between 1300 and 750 yr BP. The synchrony of the latitudinal shift with cooling in Antarctica and reduced ENSO activity observed in several marine and terrestrial archives across South America suggests a causal link between ENSO and the proposed displacement of the zonal systems. This shift might have acted as a positive feedback to more La Niña-like conditions between 1300 and 750 yr BP by steepening the hemispheric and tropical Pacific zonal sea surface temperature gradient. This scenario further suggests different boundary conditions for ENSO before 1300 and after 750 yr BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the epsilon-Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2- epsilon-Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe-Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples. The new epsilon-Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the epsilon-Nd and delta13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published delta13C gradients. Where the epsilon-Nd record differs from the nutrient-based records, changes in the pre-formed delta13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5-4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different source areas, oceanography and climate regimes influenced the clay mineral assemblages and grain size distribution of two sediment cores from the North and South Aegean Sea during the last glacial and the Holocene. In the North Aegean Sea, clay mineral composition is mainly controlled by sea level evolution, melting of southeastern European glaciers, and establishment of the connection between the Black Sea and Aegean Sea. The long-term development of clay mineral assemblages in the South Aegean Sea reflects changes in the Nile discharge and African dust input. At this site, the establishment of pluvial conditions in the Nile catchment during the early to middle Holocene resulted in a substantial rise in smectite/illite ratios. In the late Holocene, stepwise aridification of the southern borderlands caused an increase in windblown sediment material and a decrease in Nile suspended material. The clay mineral records exhibit periodic millennial-scale fluctuations. In the North Aegean Sea, the changes are centred at a period of 1.3-1.8 ka and can be attributed to short-term climate and weathering changes in the northern borderlands. The changes in the South Aegean Sea are centred at periods of 3.2-4.3, 1.9-2.4 and 1.3-1.7 ka reflecting short-term changes in wind strength and Northeast African hydrology.