249 resultados para 1995_04071611 TM-89 4502902


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Site 585 of Deep Sea Drilling Project Leg 89 more than 500 m of volcaniclastic to argillaceous middle-Late Cretaceous sediments were recovered. Analyses by X-ray diffraction (bulk sediment and clay fraction), transmission electron microscopy, molecular and atomic absorption, and electron microprobe were done on Site 585 samples. We identify four successive stages and interpret them as the expression of environments evolving under successive influences: Stage 1, late Aptian to early Albian - subaerial and proximal volcanism, chiefly expressed by the presence of augite, analcite, olivine, celadonite, small and well-shaped transparent trioctahedral saponite, Al hydroxides, Na, Fe, Mg, and various trace elements (Mn, Ni, Cr, Co, Pb, V, Zn, Ti). Stage 2, early to middle Albian - submarine and less proximal volcanic influence, characterized by dioctahedral and hairy Mg-beidellites, a paucity of analcite and pyroxenes, the presence of Mg and K, and local alteration of Mg-smectites to Mg-chlorites. Stage 3, middle Albian to middle Campanian - early marine diagenesis, marked by the development of recrystallization from fleecy smectites to lathed ones (all of alkaline Si-rich Fe-beidellite types), by the development of opal CT and clinoptilolite, and by proximal to distal volcanic influences (Na parallel to Ti, K). Local events consist of the supply of reworked palygorskite during the Albian-Cenomanian, and the recurrence of proximal volcanic activity during the early Campanian. Stage 4, late Campanian to Maestrichtian - development of terrigenous supply resulting from the submersion of topographic barriers; this terrigenous supply is associated with minor diagenetic effects and is marked by a clay diversification (beidellite, illite, kaolinite, palygorskite), the rareness of clay recrystallizations, and the disappearance of volcanic markers.