534 resultados para 114-1
Resumo:
In spite of the lack of bottom reaching convection in the Greenland Sea since the 1980s, convection continues to ventilate the Greenland Gyre down to intermediate depth. The variability of this ventilation activity is determined here annually for eight winters according to a multiple criteria catalogue, applied to annual summer conductivity-temperature-depth transects along 75°N. The comparison of the ventilation depths with the meteorological forcing, the ice cover, and the stratification of the water column shows the decisive influence of the hydrographic structure in the upper and intermediate layers. Ice, on the other hand, is not necessary for convection to occur. Ice formation does not even lead to particularly deep convection. A stability maximum, which currently dominates the vertical structure of the water column at medium depth, limits the ventilation depths effectively.
Resumo:
The shells of the planktonic foraminifer Neogloboquadrina pachyderma have become a classical tool for reconstructing glacial-interglacial climate conditions in the North Atlantic Ocean. Palaeoceanographers utilize its left- and right-coiling variants, which exhibit a distinctive reciprocal temperature and water mass related shift in faunal abundance both at present and in late Quaternary sediments. Recently discovered cryptic genetic diversity in planktonic foraminifers now poses significant questions for these studies. Here we report genetic evidence demonstrating that the apparent 'single species' shell-based records of right-coiling N. pachyderma used in palaeoceanographic reconstructions contain an alternation in species as environmental factors change. This is reflected in a species-dependent incremental shift in right-coiling N. pachyderma shell calcite d18O between the Last Glacial Maximum and full Holocene conditions. Guided by the percentage dextral coiling ratio, our findings enhance the use of d18O records of right-coiling N. pachyderma for future study. They also highlight the need to genetically investigate other important morphospecies to refine their accuracy and reliability as palaeoceanographic proxies.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.
Resumo:
In order to map the modern distribution of diatoms and to establish a reliable reference data set for paleoenvironmental reconstruction in the northern North Pacific, a new data set including the relative abundance of diatom species preserved in a total of 422 surface sediments was generated, which covers a broad range of environmental variables characteristic of the subarctic North Pacific, the Sea of Okhotsk and the Bering Sea between 30° and 70°N. The biogeographic distribution patterns as well as the preferences in sea surface temperature of 38 diatom species and species groups are documented. A Q-mode factor analysis yields a three-factor model representing assemblages associated with the Arctic, Subarctic and Subtropical water mass, indicating a close relationship between the diatom composition and the sea surface temperatures. The relative abundance pattern of 38 diatom species and species groups was statistically compared with nine environmental variables, i.e. the summer sea surface temperature and salinity, annual surface nutrient concentration (nitrate, phosphate, silicate), summer and winter mixed layer depth and summer and winter sea ice concentrations. Canonical Correspondence Analysis (CCA) indicates 32 species and species groups have strong correspondence with the pattern of summer sea surface temperature. In addition, the total diatom flux data compiled from ten sediment traps reveal that the seasonal signals preserved in the surface sediments are mostly from spring through autumn. This close relationship between diatom composition and the summer sea surface temperature will be useful in deriving a transfer function in the subarctic North Pacific for the quantitative paleoceanographic and paleoenvironmental studies. The relative abundance of the sea-ice indicator diatoms Fragilariopsis cylindrus and F. oceanica of >20% in the diatom composition is used to represent the winter sea ice edge in the Bering Sea. The northern boundary of the distribution of F. doliolus in the open ocean is suggested to be an indicator of the Subarctic Front, while the abundance of Chaetoceros resting spores may indicate iron input from nearby continents and shelves and induced productivity events in the study area.
Resumo:
The present data set is a worldwide compilation from 11 oceanographic expeditions during which an underwater vision profiler (UVP) was deployed in situ to determine the vertical distribution (biomass) of 4 taxonomic groups of plankton larger than 600 µm, belonging to the Infrakingdom Rhizaria, including Collodaria, Acantharia, Phaeodaria and other Rhizaria. Vertical distributions are binned in four layers: 0-100, 0-200, 100-500 and 0-500 m.
Resumo:
We analyzed 214 new core-top samples for their CaCO3 content from shelves all around Antarctica in order to understand their distribution and contribution to the marine carbon cycle. The distribution of sedimentary CaCO3 on the Antarctic shelves is connected to environmental parameters where we considered water depth, width of the shelf, sea-ice coverage and primary production. While CaCO3 contents of surface sediments are usually low, high(> 15%) CaCO3 contents occur at shallow water depths (150-200 m) on narrow shelves of the eastern Weddell Sea and at a depth range of 600-900 m on the broader and deeper shelves of the Amundsen, Bellingshausen and western Weddell Seas. Regions with high primary production, such as the Ross Sea and the western Antarctic Peninsula region, have generally low CaCO3 contents in the surface sediments. The predominant mineral phase of CaCO3 on the Antarctic shelves is low-magnesium calcite. With respect to ocean acidification, our findings suggest that dissolution of carbonates in Antarctic shelf sediments may be an important negative feedback only after the onset of calcite undersaturation on the Antarctic shelves. Macrozoobenthic CaCO3 standing stocks do not increase the CaCO3 budget significantly as they are two orders of magnitude lower than the budget of the sediments. This first circumpolar compilation of Antarctic shelf carbonate data does not claim to be complete. Future studies are encouraged and needed to fill data gaps especially in the under-sampled southwest Pacific and Indian Ocean sectors of the Southern Ocean.