173 resultados para 1.6 sigma
Resumo:
Chemical interactions between seawater and the oceanic crust have been widely investigated during recent years. However, most of these studies concern the uppermost volcanic part of the crust. The contribution of the underlying sheeted dike complex to the global budget of the oceans is inferred solely from some ophiolite studies and from the 500-m high-level dike section of DSDP/ODP 504B which was drilled in 1981. Hole 504B is the only place where a continuous and long (1260 m) section in the sheeted dike complex has been cored, and it is now regarded as a reference section for the upper oceanic crust. Many petrological and chemical data from these dolerites are available, including the relative proportions of veins, extensively altered adjacent rocks, and less altered 'host-rocks'. For these three reasons, considering the entire dike section penetrated by Hole 504B is a unique chance to study chemical fluxes related to hydrothermal alteration of this part of the oceanic crust. The calculation of any chemical flux implies knowledge of the chemical composition of the fresh precursor (protolith). Previously, mean compositions of glasses (=P1a) or basalts from the Hole 504B volcanics have been used as protoliths. In this paper, we calculate and discuss the use of various protoliths based on dolerites from Hole 504B. We show that the most adequate and realistic protolith is the mean of individual protoliths that we calculated from the acquisition, by automatic mode, of about 1000 microprobe analyses in each thin-section of dolerite from the Hole 504B lower dikes. Consequently, PFm is further used to calculate chemical fluxes in the dike section of Hole 504B. The chemical compositions of the host-rocks adjacent to alteration halos tend to converge to that of PFm with depth, except for Fe2O3t and TiO2. Because the volume percent of alteration halos increases with depth, the total fluxes related to these halos increase with depth. This explains why the mean flux (host-rocks+halos+veins) of the upper dikes is roughly similar to the mean flux of the lower dikes. During the alteration of the entire Hole 504B dike section, the dolerites gained relatively large quantities of Fe2O3t (+4.0 g/100 cm**3) and released much SiO2 (-6.8 g/100 cm**3), CaO (-5.8 g/100 cm**3), and TiO2 (1.6 g/100 cm**3), and minor Al2O3 (-0.7 g/100 cm**3) and MgO (-0.7 g/100 cm**3). We show the importance of the choice of the protolith in the calculation of chemical budget, particularly for elements showing low flux values. In Hole 504B, the Mg uptake by the volcanics during low temperature alteration added to the Mg release by the dikes gives a net flux of -0.07x10**14 g/year. We propose that part of the Mg uptake by the oceanic crust, which is necessary to compensate the rivers input (-1.33x10**14 g/year), occurs in the underlying gabbros and/or in sections which are altered such as Trinity and Troodos ophiolites. Compared with ophiolites, fluxes calculated for elements other than Mg for the entire crust are generally similar (in tendency, if not in absolute value) to that we obtained from Hole 504B.
Resumo:
The abundance patterns of tunicate spicules are documented for the Pliocene-Pleistocene sediments at seven sites along the Great Barrier Reef-Queensland Plateau transect. The spatial distribution pattern indicates that tunicate spicules were limited to waters shallower than 900 m. The occurrences of tunicate spicules at Sites 822 and 823 that are deeper than 900 m are ascribed to downslope transport, and their distribution patterns can be used to monitor downslope transport processes. The first common occurrence of tunicate spicules at Sites 822 and 823 around 1.6 Ma may suggest the initiation of the central Great Barrier Reef at this time. The morphology of tunicate spicules varies greatly and appears to be gradational among different forms. Older tunicate assemblages are less diverse than those in younger sediments, presumably because of diagenesis. Tunicate spicules do not appear to be a promising biostratigraphic tool for the Pliocene-Pleistocene.
Resumo:
We determined alkenone concentrations (µg/g dry sediment) and unsaturation indices (Uk'37) on 280 samples from Ocean Drilling Program Hole 1002C over the last full glacial cycle (marine oxygen isotope Stages [MIS] 1-6). Alkenone concentrations vary dramatically in relation to glacial-interglacial cycles, with high concentrations typical of interglacial stages, high sea level, inferred high surface productivity, and bottom-water anoxia. Our reconstruction of low productivity during the last glacial maximum is consistent with previous reports of a sharp decline in the foraminiferal species Neogloboquadrina dutertrei, an upwelling index. Alkenone paleotemperatures show little cooling at both the last glacial maximum and MIS 6. Variations of as much as 4°C occurred during the earlier part of MIS 3 and MIS 4 as well as the latter part of MIS 5. The absence of cooling during glacial maxima determined from alkenone paleothermometry is consistent with faunal reconstructions for the western Caribbean but requires that much of the oxygen isotopic record of the planktonic foraminifer Globigerinoides ruber be influenced by salinity variations rather than temperature.
Resumo:
Sediment samples were obtained for detailed Adenosine 5'-Triphosphate (ATP) analysis down to 57.8 m below the seafloor (mbsf). The samples were also analyzed for particle-size distribution, calcium carbonate (CaCO3), organic carbon, and total nitrogen. The concentrations of ATP ranged between 360 and 7050 pg/g (dry weight sediment), which agree well with a limited number of direct bacteria counts. Principal component analyses show that 63% of the total variance can be accounted for by the first two principal components. The concentration of ATP (bacterial numbers by inference) is virtually independent of the concentration of sedimentary organic carbon, but correlates with CaCO3 and coarse particles.
Resumo:
The cores, dredges and submarine camera observations described in this report were taken on the KH-71-1 Expedition in January-March, 1971 by the Ocean Research Institute, University of Tokyo from the Hakuho Maru. A total of 24 cores, dredges and camera station sites have been recovered.