998 resultados para 1 std dev
Resumo:
To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.
Resumo:
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.
Resumo:
Although the pulsating nature and the abruptness of the last deglaciation are well documented in marine and land records, very few marine records have so far been able to capture the high-frequency climatic changes recorded in the Greenland ice core Dye 3. We studied high-resolution sediment cores from SE Norwegian Sea, which display a detailed climatic record during the last deglaciation comparable to that of Dye 3. Accelerator mass spectrometry age control of the cores enables us to correlate this record in detail with continental records. The results indicate that the surface waters of the SE Norwegian Sea were seasonally ice free after 13,400 B.P. The Bølling/Allerød interstadial complex (13,200-11,200 B.P.) was a climatically unstable period with changing Arctic-Subarctic conditions. This period was punctuated by four progressively more severe sea surface temperature (SST) minima: between 12,900-12,800 B.P. (BCP I); 12,500-12,400 B.P. (BCP II); 12,300-12,000 B.P. (OD I); and 11,800-11,500 B.P. (OD II). The Younger Dryas (YD) (11,200-10,200 B.P.) represents the severest and most prolonged cold episode of this series of climatic deteriorations. It was bounded by very rapid SST changes and characterized by Arctic-Polar conditions. The first true warm Atlantic water incursion to the SE Norwegian Sea took place around 10,100 B.P., followed by a brief cooler condition between 9900-9600 B.P. (YD II). The early Holocene climatic optimum occurred between 8000-5000 B.P. A conceptual model is proposed where meltwater fluxes are suggested to cause the observed instability in the SST record.
Resumo:
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.
Resumo:
The most direct method of investigating past variations of the atmospheric CO2 concentration before 1958, when continuous direct atmospheric CO2 measurements started, is the analysis of air extracted from suitable ice cores. Here we present a new detailed CO2 record from the Dronning Maud Land (DML) ice core, drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA) and some new measurements on a previously drilled ice core from the South Pole. The DML CO2 record shows an increase from about 278 to 282 parts per million by volume (ppmv) between ad 1000 and ad 1200 and a fairly continuous decrease to a mean value of about 277 ppmv around ad 1700. While the new South Pole measurements agree well with DML at the minimum at ad 1700 they are on average about 2 ppmv lower during the period ad 1000-1500. Published measurements from the coastal high-accumulation site Law Dome are considered as very reliable because of the reproducibility of the measurements, high temporal resolution and an accurate time scale. Other Antarctic ice cores could not, or only partly, reproduce the pre-industrial measurements from Law Dome. A comparison of the trends of DML and Law Dome shows a general agreement. However we should be able to rule out co-variations caused by the same artefact. Two possible effects are discussed, first production of CO2 by chemical reactions and second diffusion of dissolved air through the ice matrix into the bubbles. While the first effect cannot be totally excluded, comparison of the Law Dome and DML record shows that dissolved air diffusing to bubbles cannot be responsible for the pre-industrial variation. Therefore, the new record is not a proof of the Law Dome results but the first very strong support from an ice core of the Antarctic plateau.
Resumo:
Biogenic particle fluxes from highly productive surface waters, boundary scavenging, and hydrothermal activity are the main factors influencing the deposition of radionuclides in the area of the Galapagos microplate, eastern Equatorial Pacific. In order to evaluate the importance of these three processes throughout the last 100 kyr, concentrations of the radionuclides 10Be, 230Th, and 231Pa, and of Mn and Fe were measured at high resolution in sediment samples from two gravity cores KLH 068 and KLH 093. High biological productivity in the surface waters overlying the investigated area has led to 10Be and 231Pa fluxes exceeding production during at least the last 30 kyr and probably the last 100 kyr. However, during periods of high productivity at the up welling centers off Peru and extension of the equatorial high-productivity zone, a relative loss of 10Be and 231Pa may have occurred in these sediment cores because of boundary scavenging. The effects of hydrothermal activity were investigated by comparing the 230Thex concentrations to the Mn/Fe ratios and by comparing the fluxes of 230Th and 10Be which exceed production. The results suggest an enhanced hydrothermal influence during isotope stages 4 and 5 and to a lesser extent during isotope stage 1 in core KLH 093. During isotope stages 2 and 3, the hydrothermal supply of Mn was deposited elsewhere, probably because of changes in current regime or deep water oxygenation. A strong increase of the Mn/Fe ratio at the beginning of climatic stage 1 which is not accompanied by an increase of the 230Thex concentration is interpreted to be an effect of Mn remobilization and reprecipitation in the sediment.
Resumo:
The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions (epsilon-Nd =38.6 to 310.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. epsilon-Nd values of up to 36.5 for samples 62.9 Ma indicate <=35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/204Pb =18.97 +/- 0.06, 207Pb/204Pb =15.67 +/- 0.02, 208Pb/204Pb =39.19 +/- 0.11. 87Sr/86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ~250 Ma. 40Ar/39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite- smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/39Ar age data, therefore, are insensitive to smectite formation during chemical weathering but date the diagenetic growth of illite, the major K-bearing phase in the dust. Over the past 12 Myr, the dust flux to the north Pacific increased by more than an order of magnitude, documenting a substantial drying of central Asia. This climatic change, however, did not alter the ultimate source of the dust, and neoformational products of chemical weathering always remained subordinate to assemblages reworked by mechanical erosion in dust deposited in eastern Asia and the Pacific Ocean.
Resumo:
We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.
Resumo:
Very significant enhancements of the element iridium have been observed in association with the Cretaceous/ Tertiary boundary in marine sediments laid down 65 m.y. ago and subsequently uplifted above the ocean's surface. If our hypothesis for the origin of the iridium and the cause of the Cretaceous/Tertiary life extinctions (the asteroid-impact theory) (Alvarez et al., 1980) is correct, the Ir anomaly should be associated with the Cretaceous/ Tertiary boundary region wherever it is intact. The present work was undertaken to search for the Ir anomaly in a deep-sea-drilling core, in order to check this aspect of the asteroid-impact theory.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
A multiparameter investigation including organic carbon, carbonate, opal, and planktic foraminifera was carried out on five sediment cores from the coastal upwelling area between 24°S and 33°S along the Peru-Chile Current to reconstruct the history of the paleoproductivity and its driving mechanisms during the last 40,000 years. Inferred from our data, we conclude that the Antarctic Circumpolar Current as the main nutrient source in this region mainly drives the productivity by its latitudinal shifts associated with climate change. Simplified, its northerly position during the last glacial led to enhanced productivities, and its southerly position during the Holocene caused lower productivities. At 33°S the paleoproductivity was additionally affected by the southern westerlies and records highest levels during the Last Glacial Maximum (LGM). North of 33°S, several factors (e.g., position and strength of the South Pacific anticyclone, wind stress, continental runoff, and El Niño Southern Oscillation events) supplementary influenced upwelling and paleoproductivity, where maximum values occurred prior to the LGM and during the deglaciation.
Resumo:
On the basis of the radiocarbon (14C) plateau-tuning method a new age model for Timor Sea Core MD01-2378 was established. It revealed a precise centennial-scale phasing of climate events in the ocean, cryo-, and atmosphere during the last deglacial and provides important new insights into causal linkages controlling events of global climate change. At Site MD01-2378 reservoir ages of surface waters dropped from 1600 yr prior to 20 cal ka to 250-500 yr after 18.8 cal ka. This evidence was crucial for generating a high-resolution age model for deglacial events in the Indo-Pacific Warm Pool. Sea-surface temperatures (SST) started to change near 18.8 cal ka, that is ~500 yr after the start of, presumably northern hemispheric, deglacial melt and sea level rise as shown by the benthic foraminiferal oxygen isotope ratio (d18O). However, the SST rise occurred 500-1000 yr prior to the onset of deglacial Antarctic warming and the first major rise in atmospheric carbon dioxide at about 18 ka. The increase in SST may partly reflect reduced seasonal upwelling of cold subsurface waters along the eastern margin of the Indian Ocean, which is reflected by a doubling of the thermal gradient between the sea surface and the thermocline, a halving of chlorin productivity from 19 to 18.5 cal ka, and in particular, by the strong decrease in surface water reservoir ages. Two significant increases in deglacial Timor Sea surface salinities from 19-18.5 and 15.5-14.5 cal ka, may partly reflect the deglacial increase in the distance of local river mouths, partly an inter-hemispheric millennial-scale see-saw in tropical monsoon intensity, possibly linked to a deglacial increase in the dominance of Pacific El Niño regimes over Heinrich stadial 1.
Resumo:
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ?100 km beyond the morphological hotspot track.
Resumo:
About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.