994 resultados para 1,3-Butadiene per unit sediment mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several high-resolution proxy environmental records have been obtained for the last 35 kyr from ODP Hole 658C, a well-studied site ca. 200 km off Cap Blanc, NW Africa. The collective assessment based on the marine proxies (UK'37 SST, contents of TOC and chlorins, Upwelling Radiolarian Index and the percentage of Florisphaera profunda), surprisingly indicates that the last glacial maximum (LGM) was characterized by warmer sea surface temperature (SST), weaker upwelling, and lower marine productivity, compared with the preceding older glacial and subsequent deglaciation periods. Of the terrigenous proxies, the mean grain size of the non-carbonate fraction and the terrigenous alkane content indicate that wind strength and aridity were high. The weaker upwelling at the 658 site during the LGM may have resulted from changes in the strength and direction of the wind systems and/or shifts in the position and geometry of the upwelling cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record-most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past decades, remarkable changes in sea-surface temperature (SST) and sea-ice extent have been observed in the marginal seas of the subarctic Pacific. However, little is known about natural climate variability at millennial time scales far beyond instrumental observations. Geological proxy records, such as those derived from marine sediments, offer a unique opportunity to investigate millennial-scale natural climate variability of the Artic and subarctic environments during past glacial-interglacial cycles. Here we provide reconstructions of sea-ice variability inferred from IP25 (Ice Proxy with 25 carbon atoms) sea-ice biomarker and SST fluctuations based on alkenone unsaturation index (UK'37) of the subarctic Pacific realm between 138 and 70 ka. Warmest sea-surface conditions were found during the early Eemian interglacial (128 to 126 ka), exceeding modern SSTs by ~2 °C. The further North Pacific climate evolu- tion is marked by pronounced oscillations in SST and sea-ice extent on millennial time scales, which correspond remarkably well to short-term temperature oscillations known from Green- land and the North Atlantic. These results imply a common forcing, which seems to be closely coupled to dynamics of the Atlantic meridional overturning circulation. However, immediate propagation of such climate fluctuations far beyond the North Atlantic basin suggests a rapid circumpolar coupling mechanism probably acting through the atmosphere, a prerequisite to explain the apparent synchronicity of remote climatic reorganizations in the subarctic Pacific.