457 resultados para vertical cavity surface-emitting laser (VCSEL)
Resumo:
Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 d18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, dD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5 per mil for d18O and 0 to 2 per mil for dD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high d18O (0.5-1.1 per mil) and dD (3-6 per mil) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (d18O: -0.1 to 0.5 per mil; dD: -1 to 4 per mil) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed d18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0.46 described previously by Pierre et al. (1994, J. Mar. Syst. 5 (2), 159-170.) for the tropical to subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The dD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 3.47 for the NACW, and 2.63 for the surface waters. The slopes of the d18O-dD relationship are significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower slopes in all the relationships clearly reflect the impact of the evaporation surplus in the subtropics.
Oxygen and hydrogen isotopes measured on water bottle samples during EUROFLEETS cruise Iberia-Forams
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).