214 resultados para terminal doxynucleotidyl transferase d-UTP nick end labelling
Resumo:
In the first season of drilling, the Cape Roberts Project (CRP) recovered one drillcore (CRP-l) from Roberts Ridge in western McMurdo Sound, Ross Sea, Antarctica Diatom biostratigraphy places the upper six lithostratigraphic units (Units 1.1, 2.1, 2.2, 2.3, 3.1, and 4.1) of CRP-l (0.0 to 43.15 mbsf) within the Quaternary. Both non-marine and marine Quaternary diatoms occur in variable abundance in the Quaternary interval of CRP- 1 Biostratigraphic data resolve two Quaternary time slices or events within CRP-1. Marine diatom assemblages in Units 4.1 and 3.1 represent sedimentation within the diatom Actinocyclus ingens Zone (1.35 to 0.66 Ma). Further refinement of the age of Unit 3.l places deposition in the interval 1.15 to 0.75 Ma based on the common occurrence of Thalassiosira elliptipora and correlation to the Southern Ocean acme of this taxon The absence of ActiActinocyclus ingens and the presence ot Thalassiosira antarctica in Unit 2.2 require a younger zonal assignment for this interval, within the diatom Thalassiosira lentiginosa Zone (0.66 to 0.0 Ma). A new diatom species. Rouxia leventerae, is described from marine assemblages of Units 2.2, 2.3, 3.1, and 4.l. Lithostratigraphic Unit 3.1 (33.82 to 31.89 mbsf) is a bryozoan-dominated skeletal-carbonate facies. Low abundance of Fragilariopsis curta and Fragilariopsis cylindrus within this unit combined with the relatively high abundance of species associated with open water indicates deposition in waters that remained ice free for much or all of the year Diatom assemblages suggest carbonate deposition in Unit 3.1 is linked to a significant early Pleistocene event in McMurdo Sound, when elevated surface-water temperatures inhibited the formation of sea ice.
Resumo:
The drift of 52 icebergs tagged with GPS buoys in the Weddell Sea since 1999 has been investigated with respect to prevalent drift tracks, sea ice/iceberg interaction, and freshwater fluxes. Buoys were deployed on small- to medium-sized icebergs (edge lengths ? 5 km) in the southwestern and eastern Weddell Sea. The basin-scale iceberg drift of this size class was established. In the western Weddell Sea, icebergs followed a northward course with little deviation and mean daily drift rates up to 9.5 ± 7.3 km/d. To the west of 40°W the drift of iceberg and sea ice was coherent. In the highly consolidated perennial sea ice cover of 95% the sea ice exerted a steering influence on the icebergs and was thus responsible for the coherence of the drift tracks. The northward drift of buoys to the east of 40°W was interrupted by large deviations due to the passage of low-pressure systems. Mean daily drift rates in this area were 11.5 ± 7.2 km/d. A lower threshold of 86% sea ice concentration for coherent sea ice/iceberg movement was determined by examining the sea ice concentration derived from Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) satellite data. The length scale of coherent movement was estimated to be at least 200 km, about half the value found for the Arctic Ocean but twice as large as previously suggested. The freshwater fluxes estimated from three iceberg export scenarios deduced from the iceberg drift pattern were highly variable. Assuming a transit time in the Weddell Sea of 1 year, the iceberg meltwater input of 31 Gt which is about a third of the basal meltwater input from the Filchner Ronne Ice Shelf but spreads across the entire Weddell Sea. Iceberg meltwater export of 14.2 × 103 m3 s?1, if all icebergs are exported, is in the lower range of freshwater export by sea ice.