174 resultados para solid-phase crystallization (SPC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate benthic phosphorus cycling in recent continental margin sediments at three sites off the Namibian coastal upwelling area. Examination of the sediments reveals that organic and biogenic phosphorus are the major P-containing phases preserved. High Corg/Porg ratios just at the sediment surface suggest that the preferential regeneration of phosphorus relative to that of organic carbon has either already occurred on the suspension load or that the organic matter deposited at these sites is already rather refractory. Release of phosphate in the course of benthic microbial organic matter degradation cannot be identified as the dominating process within the observed internal benthic phosphorus cycle. Dissolved phosphate and iron in the pore water are closely coupled, showing high concentrations below the oxygenated surface layer of the sediments and low concentrations at the sediment-water interface. The abundant presence of Fe(III)-bound phosphorus in the sediments document the co-precipitation of both constituents as P-containing iron (oxyhydr)oxides. However, highly dissolved phosphate concentrations in pore waters cannot be explained, neither by simple mass balance calculations nor by the application of an established computer model. Under the assumption of steady state conditions, phosphate release rates are too high as to be balanced with a solid phase reservoir. This discrepancy points to an apparent lack of solid phase phosphorus at sediment depth were suboxic conditions prevail. We assume that the known, active, fast and episodic particle mixing by burrowing macrobenthic organisms could repeatedly provide the microbially catalyzed processes of iron reduction with authigenic iron (oxyhydro)oxides from the oxic surface sediments. Accordingly, a multiple internal cycling of phosphate and iron would result before both elements are buried below the iron reduction zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2008 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling to a depth of 1m was performed before sowing in April 2002. Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2004 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments associated with freshwater ferromanganese concretions in Lake Charlotte, Nova Scotia, contained microscopic precipitates of manganese and iron. These precipitates were dispersed throughout the sediment and were as rich in nickel, cobalt, and copper as deep sea concretions. In addition, the development of the precipitates appeared to be associated with the microbial oxidation of manganese. Results from the deployment of poisoned and unpoisoned dialysis probes or peepers demonstrated that microbial manganese oxidation and nickel binding were closely associated, causing a fivefold enhancement of abiotic processes such as adsorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the vertical distribution of authigenic carbonates (aragonite and high Mg-calcite) in the form of finely disseminated precipitates as well as massive carbonate concretions present in and above gas hydrate bearing sediments of the Northern Congo Fan. Analyses of Ca, Mg, Sr and Ba in pore water, bulk sediments and authigenic carbonates were carried out on gravity cores taken from three pockmark structures (Hydrate Hole, Black Hole and Worm Hole). In addition, a background core was retrieved from an area not influenced by fluid seepage. Pore water Sr/Ca and Mg/Ca ratios are used to reveal the current depths of carbonate formation as well as the mineralogy of the authigenic precipitates. The Sr/Ca and Mg/Ca ratios of bulk sediments and massive carbonate concretions were applied to infer the presence and depth distribution of authigenic aragonite and high Mg-calcite, based on the approach presented by Bayon et al. [Bayon et al. (2007). Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241(1-4), 93-109, doi:10.1016/j.margeo.2007.03.007]. We show that the approach developed by Bayon et al. (2007) for sediments of cold seeps of the Niger Delta is also suitable to identify the mineralogy of authigenic carbonates in pockmark sediments of the Congo Deep-Sea Fan. We expand this approach by combining interstitial with solid phase Sr/Ca and Mg/Ca ratios, which demonstrate that high Mg-calcite is the predominant authigenic carbonate that currently forms at the sulfate/methane reaction zone (SMRZ). This is the first study which investigates both solid phase and pore water signatures typical for either aragonite or high Mg-calcite precipitation for the same sediment cores and thus is able to identify active and fossil carbonate precipitation events. At all investigated pockmark sites fossil horizons of the SMRZ were deduced from high Mg-calcite located above and below the current depths of the SMRZ. Additionally, aragonite enrichments typical for high seepage rates were detected close to the sediment surface at these sites. However, active precipitation of aragonite as indicated by pore water characteristics only occurs at the Black Hole site. Dissolved and solid phase Ba concentrations were used to estimate the time the SMRZ was fixed at the current depths of the diagenetic barite fronts. The combined pore water and solid phase elemental ratios (Mg/Ca, Sr/Ca) and Ba concentrations allow the reconstruction of past changes in methane seepage at the investigated pockmark sites. At the Hydrate Hole and Worm Hole sites the time of high methane seepage was estimated to have ceased at least 600 yr BP. In contrast, a more recent change from a high flux to a more dormant stage must have occurred at the Black Hole site as evidenced by active aragonite precipitation at the sediment surface and a lack of diagenetic Ba enrichments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.