502 resultados para siliceous rock


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with the mineralogical variability of siliceous and zeolitic sediments, porcellanites, and cherts at small intervals in the continuously cored sequence of Deep Sea Drilling Project Site 462. Skeletal opal is preserved down to a maximum burial depth of 390 meters (middle Eocene). Below this level, the tests are totally dissolved or replaced and filled by opal-CT, quartz, clinoptilolite, and calcite. Etching of opaline tests does not increase continously with deeper burial. Opal solution accompanied by a conspicuous formation of authigenic clinoptilolite has a local maximum in Core 16 (150 m). A causal relationship with the lower Miocene hiatus at this level is highly probable. Oligocene to Cenomanian sediments represent an intermediate stage of silica diagenesis: the opal-CT/quartz ratios of the silicified rocks are frequently greater than 1, and quartz filling pores or replacing foraminifer tests is more widespread than quartz which converted from an opal-CT precursor. As at other sites, there is a marked discontinuity of the transitions from biogenic opal via opal-CT to quartz with increasing depth of burial. Layers with unaltered opal-A alternate with porcellanite beds; the intensity of the opal-CT-to-quartz transformation changes very rapidly from horizon to horizon and obviously is not correlated with lithologic parameters. The silica for authigenic clinoptilolite was derived from biogenic opal and decaying volcanic components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous skeletons were investigated in two core profiles (9 cores), one off Cap de Sines, Portugal and the other off Cap de Mazagan, Morocco. Total number of skeletons was determined per gram of dried sediment at different core depths of the fraction >21 µ. Results are compared with a core profile from the Arabian Sea. Diatoms are of four groups: (A) marine-planktonic, B) marine-benthic, (C) freshwater and (D) Tertiary species (Trinacria e.g.). Species from groups (B), (C) and (D) are redeposited in all cores taken at a water depth of greater than 100 m. Small numbers of Silicoflagellates and Radiolarians were found throughout the cores from the Ibero-Moroccan shelf. In the Arabian Sea core, Radiolarians were concentrated in distinct horizons in which Tertiary material was redeposited (40-50, 140-150, 250-260 cm). The number of siliceous skeletons per gram of dried sediment decreases more or less rapidly with increasing depth in all cores. Whereas about 2500 skeletons were found in sediments close to the surface, approximately 100 skeletons only were found in deeper (>40 cm) layers. Deeper horizons with more than 100 specimens were interpreted as redeposited material. This sediment contained robust skeletons, resistant against dissolution, as well as benthic and Tertiary material. The decrease of siliceous skeletons relative to core depth depends upon the sedimentation rate. Where the sedimentation rate is high, the opal dissolution zone extends down to 30-60 cm, where the sedimentation rate is low, it is located at 10-30 cm. Below these depths opals disappears. These zones also have approximately the same age (4000 years) everywhere. Siliceous skeletons dissolve differentially, first the Silicoflagellates disappear, second the Diatoms, third the Radiolarians, and fourth the Sponge Spicules. Surface structure of skeletons from near the opal dissolution zones are similar to those of skeletons treated with NaOH. Tertiary diatoms (Trinacria e. g.) and benthic diatoms (Campylodiscus e.g.) dissolve less rapidly than skeletons of modern planktonic diatoms (Coscinodiscus e.g.). The time control of the opal dissolution zones appeared rather independent of various oceanic influences. No evidence was found for effects from upwelling either off Portugal or off Morocco. No difference in dissolution rates was recorded between the abyssal plains lying off these two areas. Likewise, there was no change in solution rates from Pleistocene to Holocene within either one of the abyssal plains. The Mediterranean outflow, which is enriched in dissolved silica, apparently had no effect on dissolution rates of siliceous skeletons in the sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A close examination of the siliceous microfossil assemblages from the sediments of ODP Leg 127, Japan Sea Sites 794, 795, and 797, reveals that upper Pliocene and Pleistocene assemblages have been subjected to more dissolution than have lower Pliocene assemblages. This conclusion is based on semiquantitative observations of samples processed for diatoms and radiolarians. Although preservation of opaline microfossils in some upper Pliocene and Pleistocene samples is better than others, in general, the poorly preserved state of these assemblages supports the notion that opal dissolution, in response to lowered productivity, is responsible for the paucity of siliceous microfossils in upper Pliocene and Pleistocene sediments. The lithological transition from diatomaceous oozes to silts and clays corresponds to a change between dominantly well preserved to more poorly preserved siliceous assemblages, and is termed the late Pliocene Japan Sea opal dissolution transition zone (ODTZ). The base of the ODTZ is defined as the uppermost occurrence of high abundances of moderately to well preserved valves of the diatom Coscinodiscus marginatus. The dissolution transition zone is characterized by partially dissolved refractory assemblages of radiolarians, the presence of C. marginatus girdles, C. marginatus fragments, siliceous sponge spicules, and a general decrease in weakly silicified, less solution resistant diatoms upward in the section. The top of the dissolution transition zone marks the level where whole C. marginatus valves and C. marginatus fragments are no longer present in significant numbers. Dissolution of the late Pliocene and Pleistocene opaline assemblages is attributed mainly to changes in paleoceanographic circulation patterns and decreased nutrient (dissolved silicon) contents of the water column, and possibly dissolution at the sediment/water interface, rather than to post-depositional dissolution or diagenesis. We suggest that the transition from silica-rich to silica-poor conditions in the Japan Sea was due to fluctuations of deep-water exchange with the Pacific through the Tsugaru Strait between 2.9 and 2.3 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven opal-CT-rich and five quartz-rich porcellanites and cherts from Site 504 have a range in oxygen-isotope values of 24.4 and 29.4 per mil. In opal-CT rocks, d18O becomes larger with sub-bottom depth and with age. Quartz-rich rocks do not show these trends. Boron, in general, increases with decreasing d18O for porcellanites and cherts considered together, supporting the conclusion that boron is incorporated within the quartz crystal structure during precipitation of the SiO2. Silicification of the chalks at Site 504 began 1 m.y. ago - that is, 5 m.y. after sedimentation commenced on the oceanic crust. Temperatures of chert formation determined from oxygen-isotope compositions reflect diagenetic temperatures rather than bottom-water temperatures, and are comparable to temperatures of formation determined by down-hole measurements. Opal-A in the chalks began conversion to opal-CT when a temperature of 50°C was reached in the sediment column. Conversion of opal-CT to quartz started at 55 °C. Silicification occurred over a stratigraphic thickness of about 10 meters when the temperature at the top of the 10 meters reached about 50°C. It took about 250,000 years to complete the silica transformation within each 10-meter interval of sediment at Site 504. Quartz formed over a stratigraphic range of at least 30 meters, at temperatures of about 54 to 60°C. The time and temperatures of silicification of Site 504 rocks are more like those at continental margins than those in deep-sea, open-ocean deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous sponge spicules were found in Quaternary sediments recovered during drilling of Leg 180. The assemblage consists mainly of monaxon forms. Relative abundances of the various types are tabulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eocene siliceous and calcareous phytoplankton, with emphasis on silicoflagellates, were studied in 62 samples from DSDP Sites 612 and 613 on the continental slope and rise off New Jersey. The mid-latitude assemblages correlate well with assemblages from California, Peru, and offshore of southern Brazil, but are distinctly different from high-latitude cold-water assemblages of the Falkland Plateau off southern Argentina. Coccoliths and silicoflagellates provide evidence for the presence of a fairly complete middle and upper Eocene sequence, represented by a composite of Sites 612 and 613. A major unconformity occurs at the middle Eocene to upper Eocene contact at Site 612. The genus Bachmannocena Locker is emended and proposed as a replacement for genus Mesocena Ehrenberg for ring silicoflagellates. Six new silicoflagellates and one new diatom are described: Bachmannocena apiculata monolineata Bukry, n. subsp., Corbisema amicula Bukry, n. sp., C. bimucronata elegans Bukry, n. subsp., C. hastata incohata Bukry, n. subsp., C. jerseyensis Bukry, n. sp., Dictyocha acuta Bukry, n. sp., and Coscinodiscus eomonoculus Bukry, n. sp. Also, one new replacement name, B. paulschulzn Bukry, nom. nov., and 24 new combinations are proposed for genus Bachmannocena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 190 was the first of a two-leg program across the Nankai accretionary prism and Trough, offshore Japan, aiming to evaluate existing models for prism evolution and to constrain syntectonic sedimentation, deformation styles, mechanical properties, and prism hydrology (Moore, Taira, Klaus, et al., 2001; Moore et al., 2001). More than 400 volcanic ash and siliceous claystone (altered ash) layers were penetrated and sampled during drilling of the six sites from two transects across the accretionary prism (Sites 1173-1178). In sites from the subducting Shikoku Basin (Sites 1173 and 1177) and in the trench axis (Site 1174), recognition of ash layers and diagenetically altered ashes was initially important in defining major lithostratigraphic units. However, it is clear that understanding the diagenesis of the volcanic ashes has considerable implications for prism evolution, mechanical properties, prism hydrology, geochemistry, and fluid flow in the accretionary prism and associated subducting sediments (cf. Masuda et al., 1996, doi 10.1346/CCMN.1996.0440402). Particle size, chemical composition, temperature, depth of burial, and time are all thought to be factors that may affect volcanic ash diagenesis and preservation (Kuramoto et al., 1992, doi:10.2973/odp.proc.sr.127128-2.235.1992; Underwood et al., 1993, doi:10.2973/odp.proc.sr.131.137.1993). The overall aim of this research is to evaluate factors influencing volcanic ash diagenesis in the Nankai Trough area. This data report presents just the results of the sedimentological and petrographic analysis of the volcanic ashes and siliceous claystones from Sites 1173, 1174, and 1177. It is anticipated that when the results of additional geochemical analysis of these lithologies is available a more meaningful evaluation of factors influencing volcanic ash alteration will be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pliocene-Holocene sediments recovered on ODP Leg 114 from Holes 699A, 701C, and 704B are the subject of a detailed investigation to interpret changes in the Oceanographic environment of the South Atlantic in the vicinity of the Polar Front Zone (PFZ). The cores sample sediments at shallow (Hole 704B, 2532 m), intermediate (Hole 699A, 3716 m), and basinal (Hole 701C, 4647 m) depths. Sites 699 and 704 come under the influence of the Antarctic Circumpolar Current (ACC) and Circumpolar Deep Water. It is possible that the upper reaches of Antarctic Bottom Water (AABW) may also affect Hole 699A. Site 701 is influenced by AABW. Closely spaced samples were analyzed for grain-size distribution, sand fraction components, biosiliceous microfossils, organic carbon, and water content. PFZ migrations are traced using changes in bulk sedimentaccumulation rates and the abundance of the diatoms Actiniscus ssp. and Genus et species indet. 1 Fenner (1991), as well as changes in sediment grain size and composition. Diatomaceous sediments of Gilbert age in Hole 699A indicate that the PFZ was positioned over this site, but during the Gauss it migrated north, bringing in less productive Antarctic Surface Water. All cores document a very gradual southerly movement of the PFZ throughout the Matuyama (with some sharp fluctuations of the northen PFZ border over Site 704 between 1.45 and 1.83 m.y.). This regressive shift culminated in the late Matuyama. The latest Matuyama to earliest Brunhes record in Hole 699A has been removed by a hiatus lasting from 1.0 to 0.6 m.y., which was probably caused by intensification of the deep-reaching ACC. The corresponding interval in Hole 704B, the shallowest core, contains evidence of winnowing. Sharp fluctuations of large amplitude and high frequency in the lithology of the sediments from Hole 704B in the eastern South Atlantic, starting at about 0.75 m.y. and characterizing the whole Brunhes Epoch, record the rapid movement of the northern border of the PFZ over the site. These reflect strong glacial/interglacial alternations in climate. To a lesser extent, lithologic fluctuations in Hole 701C reflect the same phenomenon, whereas in Hole 699A the lithology does not vary as dramatically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Eocene diatom and silicoflagellate record of ODP Site 1260A (Demerara Rise) is studied quantitatively in order to throw light on the changes that siliceous phytoplankton communities experienced during a Middle Eocene warming event that occurred between 44.0 and 42.0 Ma. Both Pianka's overlap index, calculated per couple of successive samples, and cluster analysis, point to a number of significant turnover events highlighted by changes in the structure of floristic communities. The pre-warming flora, dominated by cosmopolitan species of the diatom genus Triceratium, is replaced during the warming interval by a new and more diverse assemblage, dominated by Paralia sulcata (an indicator of high productivity) and two endemic tropical species of the genus Hemiaulus. The critical warming interval is characterized by a steady increase in biogenic silica and a comparable increase in excess Ba, both reflecting an increase in productivity. In general, it appears that high productivity not only increased the flux of biogenic silica, but also sustained a higher diversity in the siliceous phytoplankton communities. The microflora preserved above the critical interval is once again of low diversity and dominated by various species of the diatom genus Hemiaulus. All assemblages in the studied material are characterized by the total absence of continental and benthic diatoms and the relative abundance of neritic forms, suggesting a transitional depositional environment between the neritic and the oceanic realms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the siliceous microplankton assemblages (mainly diatoms) from plankton tows (mesh size 20 µm) and surface sediment samples collected along a N-S transect in the northern Red Sea (28-21°N). In addition, we analyzed differences/similarities between plankton and sediment assemblages within a brine-filled basin (the southern basin) of the Shaban Deep and compared these assemblages with those from outside the brine. Plankton samples revealed the overwhelming dominance of diatoms over other siliceous groups. Diatoms accounted for ca. 97% of all biosiliceous particles at 120-20 m (vs. 2.9% silicoflagellates and 0.4% radiolarians), and ca. 94% at 200-120 m (vs. 4.5% silicoflagellates and 1.6% radiolarians). In general, a marine, warm-water (tropical/subtropical) diatom assemblage characterizes the plankton samples. Representatives of the Nitzschia bicapitata group are by far the most abundant contributors at both depth intervals (average=43%), ranging from ca. 30% in the North to ca. 60% in the South. Biogenic opal content in non-brine surface sediments is very low, (below 0.2 wt.% SiO2); and concentration of siliceous microorganisms is also low and of the order of 5*10**3-10**4 microorganisms/g dry sediment. Diatoms are the main contributors to the opal signal in the 20-40 µm fraction, while they share dominance with radiolarians in the >40 µm fraction. Total diatom concentrations average 1.2*10**4 valves/g in the 20-40 µm fraction and 4*10**3 valves/g in the >40 µm fraction. Robust taxa of warm water affinity (Alveus marinus, Azpeitia neocrenulata, Azpeitia nodulifera and Roperia tesselata) characterize the surface sediments. In contrast, biogenic opal content in brine surface sediment samples is much higher than in the non-brine samples, ranging from 2.8 to 3.8 wt.% SiO2, and concentration of siliceous microorganisms is 3-4 orders of magnitude higher. In addition here, diatoms dominate the opal signal. The taxa found in these samples are a mixture of non-brine and plankton samples, and fragile forms (e.g., N. bicapitata group, Neodelphineis indica) are well preserved in these sediments. Thus, brine sediments in this region seem to offer a great potential for palaeoenvironmental studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.