143 resultados para resting from grazing
Resumo:
Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.
Resumo:
Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.
Resumo:
Anthropogenic CO2 emissions have exacerbated two environmental stressors, global climate warming and ocean acidification (OA), that have serious implications for marine ecosystems. Coral reefs are vulnerable to climate change yet few studies have explored the potential for interactive effects of warming temperature and OA on an important coral reef calcifier, crustose coralline algae (CCA). Coralline algae serve many important ecosystem functions on coral reefs and are one of the most sensitive organisms to ocean acidification. We investigated the effects of elevated pCO2 and temperature on calcification of Hydrolithon onkodes, an important species of reef-building coralline algae, and the subsequent effects on susceptibility to grazing by sea urchins. H. onkodes was exposed to a fully factorial combination of pCO2 (420, 530, 830 µatm) and temperature (26, 29 °C) treatments, and calcification was measured by the change in buoyant weight after 21 days of treatment exposure. Temperature and pCO2 had a significant interactive effect on net calcification of H. onkodes that was driven by the increased calcification response to moderately elevated pCO2. We demonstrate that the CCA calcification response was variable and non-linear, and that there was a trend for highest calcification at ambient temperature. H. onkodes then was exposed to grazing by the sea urchin Echinothrix diadema, and grazing was quantified by the change in CCA buoyant weight from grazing trials. E. diadema removed 60% more CaCO3 from H. onkodes grown at high temperature and high pCO2 than at ambient temperature and low pCO2. The increased susceptibility to grazing in the high pCO2 treatment is among the first evidence indicating the potential for cascading effects of OA and temperature on coral reef organisms and their ecological interactions.
Resumo:
Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance heterotrophic dinoflagellates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of heterotrophic dinoflagellates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known dinoflagellate feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C dinoflagellate-1 h-1, µm3 dinoflagellate-1 h-1 and prey cell dinoflagellate-1 h-1; clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.
Resumo:
The present data compilation includes dinoflagellates growth rate, grazing rate and gross growth efficiency determined either in the field or in laboratory experiments. From the existing literature, we synthesized all data that we could find on dinoflagellates. Some sources might be missing but none were purposefully ignored. We did not include autotrophic dinoflagellates in the database, but mixotrophic organisms may have been included. This is due to the large uncertainty about which taxa are mixotrophic, heterotrophic or symbiont bearing. Field data on microzooplankton grazing are mostly comprised of grazing rate using the dilution technique with a 24h incubation period. Laboratory grazing and growth data are focused on pelagic ciliates and heterotrophic dinoflagellates. The experiment measured grazing or growth as a function of prey concentration or at saturating prey concentration (maximal grazing rate). When considering every single data point available (each measured rate for a defined predator-prey pair and a certain prey concentration) there is a total of 801 data points for the dinoflagellates, counting experiments that measured growth and grazing simultaneously as 1 data point.
Resumo:
The present data compilation includes ciliates growth rate, grazing rate and gross growth efficiency determined either in the field or in laboratory experiments. From the existing literature, we synthesized all data that we could find on cilliate. Some sources might be missing but none were purposefully ignored. Field data on microzooplankton grazing are mostly comprised of grazing rate using the dilution technique with a 24h incubation period. Laboratory grazing and growth data are focused on pelagic ciliates and heterotrophic dinoflagellates. The experiment measured grazing or growth as a function of prey concentration or at saturating prey concentration (maximal grazing rate). When considering every single data point available (each measured rate for a defined predator-prey pair and a certain prey concentration) there is a total of 1485 data points for the ciliates, counting experiments that measured growth and grazing simultaneously as 1 data point.
Resumo:
Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
Resumo:
During Ocean Drilling Program (ODP) Leg 177, seven sites were drilled aligned on a transect across the Antarctic Circumpolar Current in the Atlantic sector of the Southern Ocean. The primary scientific objective of Leg 177 was the study of the Cenozoic paleoceanographic and paleoclimatic history of the southern high latitudes and its relationship with the Antarctic cryosphere development. Of special emphasis was the recovery of Pliocene-Pleistocene sections, allowing paleoceanographic studies at millennial or higher time resolution, and the establishment of refined biostratigraphic zonations tied to the geomagnetic polarity record and stable isotope records. At most sites, multiple holes were drilled to ensure complete recovery of the section. A description of the recovered sections and the construction of a multihole splice for the establishment of a continuous composite is presented in the Leg 177 Initial Reports volume for each of the sites (Gersonde, Hodell, Blum, et al., 1999). Here we present the relative abundance pattern and the stratigraphic ranges of diatom taxa encountered from shore-based light microscope studies completed on the Pliocene-Pleistocene sequences from six of the drilled sites (Sites 1089-1094). No shore-based diatom studies have been conducted on the Pliocene-Pleistocene sediments obtained at Site 1088, located on the northern crest of the Agulhas Ridge, because of the scattered occurrence and poor preservation of diatoms in these sections (Shipboard Scientific Party, 1999b). The data included in our report present the baseline of a diatom biostratigraphic study of Zielinski and Gersonde (2002), which (1) includes a refinement of the southern high-latitude Pliocene-Pleistocene diatom zonation, in particular for the middle and late Pleistocene, and (2) presents a biostratigraphic framework for the establishment of age models of the recovered sediment sections. Zielinski and Gersonde (2002) correlated the diatom ranges with the geomagnetic polarity record established shipboard (Sites 1090 and 1092) (Shipboard Scientific Party, 1999c, 1999d) and on shore (Sites 1089, 1091, 1093, and 1094) by Channell and Stoner (2002). The Pliocene-Pleistocene diatom zonation proposed by Zielinski and Gersonde (2002) relies on a diatom zonation from Gersonde and Bárcena (1998) for the northern belt of the Southern Ocean. Because of latitudinal differentiation of sea-surface temperature, nutrients, and salinity between Antarctic and Subantarctic/subtropical water masses, the Pliocene-Pleistocene stratigraphic marker diatoms are not uniformly distributed in the Southern Ocean (Fenner, 1991; Gersonde and Bárcena, 1998). As a consequence, Zielinski and Gersonde (2002) propose two diatom zonations for application in the Antarctic Zone south of the Polar Front (Southern Zonation, Sites 1094 and 1093) and the area encompassing the Polar Front Zone (PFZ) and the Subantarctic Zone (Northern Zonation, Sites 1089-1092). This accounts especially for the Pleistocene zonation where Hemidiscus karstenii, whose first abundant occurrence datum and last occurrence datum defines the subzonation of the northern Thalassiosira lentiginosa Zone, occurs only sporadically in the cold-water realm south of the PFZ and thus is not applicable in sections from this area. However, newly established marker species assigned to the genus Rouxia (Rouxia leventerae and Rouxia constricta) are more related to cold-water environments and allow a refinement of the Pleistocene stratigraphic zonation for the southern cold areas. A study relying on quantitative counts of both Rouxia species confirms the utility of these stratigraphic markers for the identification of sequences attributed to marine isotope Stages 6 and 8 in the southern Southern Ocean (Zielinski et al., 2002).