26 resultados para leader-follower pairs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the maritime Antarctic, brown skuas (Catharacta antarctica lonnbergi) show two foraging strategies: some pairs occupy feeding territories in penguin colonies, while others can only feed in unoccupied areas of a penguin colony without defending a feeding territory. One-third of the studied breeding skua population in the South Shetlands occupied territories of varying size (48 to >3,000 penguin nests) and monopolised 93% of all penguin nests in sub-colonies. Skuas without feeding territories foraged in only 7% of penguin sub-colonies and in part of the main colony. Females owning feeding territories were larger in body size than females without feeding territories; no differences in size were found in males. Territory holders permanently controlled their resources but defence power diminished towards the end of the reproductive season. Territory ownership guaranteed sufficient food supply and led to a 5.5 days earlier egg-laying and chick-hatching. Short distances between nest and foraging site allowed territorial pairs a higher nest-attendance rate such that their chicks survived better (71%) than chicks from skua pairs without feeding territories (45%). Due to lower hatching success in territorial pairs, no difference in breeding success of pairs with and without feeding territories was found in 3 years. We conclude that skuas owning feeding territories in penguin colonies benefit from the predictable and stable food resource by an earlier termination of the annual breeding cycle and higher offspring survivorship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with an intermediate diet. Egg size, clutch asymmetry and hatching dates varied between species and years without consistent patterns. In the south polar skuas, 12 to 38% of the variation in these parameters was explained by sea surface temperature, sea ice cover and local weather. In mixed species pairs and brown skuas, the influence of environmental factors on variation in clutch asymmetry and hatching date decreased to 10-29%, and no effect on egg size was found. Annual variation in offspring growth performance also differed between species with variable growth in chicks of south polar skuas and mixed species pairs, and almost uniform growth in brown skuas. Additionally, the dependency on oceanographic and climatic factors, especially local wind conditions, decreased from south polar skuas to brown skua chicks. Consistent in all species, offspring were more sensitive to environmental conditions during early stages; during the late chick stage (>33 d) chick growth was almost independent of environmental conditions. The net breeding success could not be predicted by any environmental factor in any skua species, suggesting it may not be a sensitive indicator of environmental conditions. Hence, the sensitivity of skuas to environmental conditions varied between species, with south polar skuas being more sensitive than brown skuas, and between breeding periods, with the egg parameters being more susceptible to oceanographic conditions. However, during offspring development, local climatic conditions became more important. We conclude that future climate change in the Maritime Antarctic will affect reproduction of skuas more strongly through changes in sea ice cover and sea surface temperature (and the resulting alterations to the marine food web) than through local weather conditions.