119 resultados para halogenated hydrocarbon


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solid phases from surface sediments, atmospheric dusts, and rivers of the Indian Ocean environment have been analyzed for their clay minerals and quartz. Such data have been used to delimit the transport paths and sources of the detrital minerals in the oceanic deposits. Diagnostic in distinguishing fluvial and eolian inputs to the northern Indian Ocean is a combination of the clay mineral assemblages and of their geographic distributions. River borne solids are the primary components of the Bay of Bengal deposits. The eastern part receives its continental input through the Ganges-Brahmaputra river system, while drainage of the Indian Peninsula by rivers introduces solids to the western part. The former materials are characterized by high illite and chlorite in the clay mineral assemblages; the latter by montmorillonite. The winds over the Bay bear distinctive dust burdens based upon their directions. However, their contributions to the sediments are insignificant. The eastern sector of the Arabian Sea receives major contributions of continental debris from the rivers and the high montmorillonite levels clearly indicate a source in the Indian Peninsula. The rest of the Sea appears to receive most of its land-derived materials from the north, perhaps the desert regions of northern India and West Pakistan, and they are wind-borne. These materials are also transported to the equatorial regions of the Indian Ocean. A gradient in attapulgite, just north of the equator, may indicate an eolian contribution to the Arabian Sea from the African continent. The halogenated hydrocarbon pesticides were assayed in the southwest monsoon winds and enter the Bay of Bengal at levels of a half ton per month, an amount comparable to those introduced by other wind and river systems to the marine environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon gases (methane, ethane, propane, isobutane, n-butane, ethene, and propene) are present in Tertiary and Quaternary shelf, upper-slope, and lower-slope deposits of the Peruvian continental margin. Methane dominates the composition of the hydrocarbon gas at all 10 sites examined during Ocean Drilling Program (ODP) Leg 112. Generation of methane is regulated by the amount of sulfate in pore water. Wherever sulfate concentrations approach or equal zero, methane concentrations increase rapidly, reaching values near 100,000 µL/L of wet sediment at eight of the 10 sites. Methane at all 10 sites results from methanogenesis, which is inhibited where sulfate is present and microbial reduction of sulfate occurs. Hydrocarbon gases heavier than methane also are present, but at much lower concentrations than methane. These hydrocarbons are thought to result from early thermal and microbial diagenesis, based on relative gas compositions and trends of concentrations with depth. With few exceptions, the results obtained in the shipboard and shore-based laboratories are comparable for methane and ethane in sediments of Leg 112. Reanalyses of canned sediments from ODP Leg 104 and from Deep Sea Drilling Project (DSDP) Legs 76 and 84 show that gas samples can be stored for as long as 8 yr, but the amounts of individual hydrocarbon gases retained vary. Nevertheless, the trends of the data sets with depth are similar for fresh and stored samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments from the Gulf of California are potentially good sources for oil and gas. They are rich in organic carbon (av. = 1.9%). Sediments from the margins of the Gulf are rich in oil-prone marine-amorphous organic matter. Sediments from Guaymas Basin contain the same material plus abundant subordinate amounts of gas-prone terrestrially derived organic matter. The enrichment of all of these sediments in marine-amorphous components reflects deposition in a highly productive and oxygen-poor water mass. The sediments are thermally immature, except for those altered by hydrothermal activity or by the intrusion of sills. These sediments are extensively cooked and may have lost their potential for hydrocarbon generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low molecular weight hydrocarbon (LMWH) distributions were examined in sediments from Sites 1109 and 1115 in the western Woodlark Basin using purge-trap thermal adsorption/desorption gas analysis. A number of different hydrocarbon components >C1, which were not detected during shipboard gas analysis, were detected at both sites using the purge-trap procedure. Concentrations of ethane, propane, and butane remained relatively low (<100 pmol/g) throughout Site 1109 and had no consistent trend with depth. In contrast, the longer-chain components increased in concentration with depth. Hexane concentrations rose to 716 pmol/g at the base of the site with a concomitant increase in both 2-methyl- and 3-methylpentane. At Site 1115, concentrations of ethane, propane, butane, and isobutylene + 1-butene remained low (<60 pmol/g) throughout the site and again had no consistent trend with depth. 2-Methylpentane, 3-methylpentane, and hexane concentrations had a subsurface maximum that coincided with sediments containing abundant plant-rich material. The LMWH downhole profiles plus low in situ temperatures suggest that the LMWH components were formed in situ by low-temperature biological processes. Purge-trap analysis has indicated the presence of some unexpected deep low-temperature bacterial reactions, which demonstrates that further analysis of LMWH may provide valuable information at future Ocean Drilling Program sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of an ongoing program of organic geochemical studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal alteration indices of organic matter collected from the Pacific continental margin of southern Mexico on Leg 66. The samples were pieces of core frozen aboard ship. Some of them were analyzed by pyrolysis, heavy C15+ hydrocarbons, and nonhydrocarbons to help determine their origin and hydrocarbon potential. Our main objectives were to find out how much organic matter was being deposited; to establish whether it derived from marine or terrestrial sources; to determine the controls of deposition of organic matter; to estimate the hydrocarbon potential of the drilled section; and to compare and contrast organic sedimentation here with that on other margins.