96 resultados para fluid flow
Resumo:
An inflatable drill-string packer was used at Site 839 to measure the bulk in-situ permeability within basalts cored in Hole 839B. The packer was inflated at two depths, 398.2 and 326.9 mbsf; all on-board information indicated that the packer mechanically closed off the borehole, although apparently the packer hydraulically sealed the borehole only at 398.2 mbsf. Two pulse tests were run at each depth, two constant-rate injection tests were run at the first set, and four were run at the second. Of these, only the constant-rate injection tests at the first set yielded a permeability, calculated as ranging from 1 to 5 * 10**-12 m**2. Pulse tests and constant-rate injection tests for the second set did not yield valid data. The measured permeability is an upper limit; if the packer leaked during the experiments, the basalt would be less permeable. In comparison, permeabilities measured at other Deep Sea Drilling Project and Ocean Drilling Program sites in pillow basalts and flows similar to those measured in Hole 839B are mainly about 10**-13 to 10**-14 m**2. Thus, if our results are valid, the basalts at Site 839 are more permeable than ocean-floor basalts investigated elsewhere. Based on other supporting evidence, we consider these results to be a valid measure of the permeability of the basalts. Temperature data and the geochemical and geotechnical properties of the drilled sediments all indicate that the site is strongly affected by fluid flow. The heat flow is very much less than expected in young oceanic basalts, probably a result of rapid fluid circulation through the crust. The geochemistry of pore fluids is similar to that of seawater, indicating seawater flow through the sediments, and sediments are uniformly underconsolidated for their burial depth, again indicating probable fluid flow. The basalts are highly vesicular. However, the vesicularity can only account for part of the average porosity measured on the neutron porosity well log; the remainder of the measured porosity is likely present as voids and fractures within and between thin-bedded basalts. Core samples, together with porosity, density, and resistivity well-log data show locations where the basalt section is thin bedded and probably has from 15% to 35% void and fracture porosity. Thus, the measured permeability seems reasonable with respect to the high measured porosity. Much of the fluid flow at Site 839 could be directed through highly porous and permeable zones within and between the basalt flows and in the sediment layer just above the basalt. Thus, the permeability measurements give an indication of where and how fluid flow may occur within the oceanic crust of the Lau Basin.
Resumo:
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.
Resumo:
Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.
Resumo:
Targeted sampling on the Dolgovskoy Mound (northern Shatsky Ridge) revealed the presence of spectacular laterally extensive and differently shaped authigenic carbonates. The sampling stations were selected based on sidescan sonar and profiler images that show patchy backscatter and irregular and discontinuous reflections in the near subsurface. The interpretation of acoustic data from the top part of the mound supports the seafloor observations and the sampling that revealed the presence of a complex subsurface plumbing system characterized by carbonates and gas. The crusts sampled consist of carbonate cemented layered hemipelagic sedimentary Unit 1 associated with several centimetres thick microbial mats. Three different carbonate morphologies were observed: (a) tabular slabs, (b) subsurface cavernous carbonates consisting of void chambers up to 20 cm**3 in size and (c) chimney and tubular conduits vertically oriented or forming a subhorizontal network in the subsurface. The methanogenic origin of the carbonates is established based on visual observations of fluids seepage structures, 13C depletion of the carbonates (d13C varying between -36.7 per mil and -27.4 per mil), and by thin carbonate layers present within the thick microbial mats. Laboratory experiments with a Hele-Shaw cell were conducted in order to simulate the gas seepage through contrasting grain size media present on the seafloor. Combined petrography, visual observations and sandbox simulations allowed a characterization of the dynamics and the structures of the plumbing system in the near subsurface. Based on sample observations and the experiments, three observed morphologies of authigenic carbonates are interpreted, respectively, as (a) Darcian porous flow through the finely laminated clayey/coccolith-rich layers, (b) gas accumulation chambers at sites where significant fluid escape was impeded by thicker clayey layers forming the laminated Unit1 and (c) focussed vertical fluid venting and subhorizontal migration of overpressured fluids released from (b). The Hele-Shaw cell experiments represent a promising tool for investigating shallow fluid flow pathways in marine systems.
Resumo:
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circum Pacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200 °C, the ore is dominantly cinnabar with Hg-Sb-As±Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70 ±3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological ancl geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.