31 resultados para dependent data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth bservation, demonstrating the applicability and usefulness of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a reliable simulation of the time and space dependent CO2 redistribution between ocean and atmosphere an appropriate time dependent simulation of particle dynamics processes is essential but has not been carried out so far. The major difficulties were the lack of suitable modules for particle dynamics and early diagenesis (in order to close the carbon and nutrient budget) in ocean general circulation models, and the lack of an understanding of biogeochemical processes, such as the partial dissolution of calcareous particles in oversaturated water. The main target of ORFOIS was to fill in this gap in our knowledge and prediction capability infrastructure. This goal has been achieved step by step. At first comprehensive data bases (already existing data) of observations of relevance for the three major types of biogenic particles, organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica (BSi or opal), as well as for refractory particles of terrestrial origin were collated and made publicly available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent population growth of diamondback moth (DBM) Plutella xylostella (L.), a prolific insect pest of crucifer vegetables, was studied under six constant temperatures in the laboratory. The objective of the study was to predict the impacts of temperature changes on the population of DBM at high-resolution scales along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted on the data for modeling the development, mortality, longevity and oviposition of the pest. The best-fitted functions for each life stage were compiled for estimating the life table parameters of the species by stochastic simulations. To quantify the impacts on the pest, three indices (establishment, generation and activity) were computed using the estimates of life table parameters and temperature data obtained at local scale (current scenario 2013) and downscaled climate change data (future scenario 2055) from the AFRICLIM database. To measure and represent the impacts of temperature change along the altitude on the pest; the indices were mapped along the altitudinal gradients of Kilimanjaro and Taita Hills, in Tanzania and Kenya, respectively. Potential impact of the changes between climate scenarios 2013 and 2055 was assessed. The data files included in this database were utilized for the above analysis to develop temperature dependent phenology of Plutella xylostella to assess current and future distribution along eastern African Afromontanes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ocean quahog, Arctica islandica is the longest-lived non-colonial animal known to science. A maximum individual age of this bivalve of 405 years has been found in a population off the north western coast of Iceland. Conspicuously shorter maximum lifespan potentials (MLSPs) were recorded from other populations of A. islandica in European waters (e.g. Kiel Bay: 30 years, German Bight: 150 years) which experience wider temperature and salinity fluctuations than the clams from Iceland. The aim of my thesis was to identify possible life-prolonging physiological strategies in A. islandica and to examine the modulating effects of extrinsic factors (e.g. seawater temperature, food availability) and intrinsic factors (e.g. species-specific behavior) on these strategies. Burrowing behavior and metabolic rate depression (MRD), tissue-specific antioxidant and anaerobic capacities as well as cell-turnover (= apoptosis and proliferation) rates were investigated in A. islandica from Iceland and the German Bight. An inter-species comparison of the quahog with the epibenthic scallop Aequipecten opercularis (MLSP = 8-10 years) was carried out in order to determine whether bivalves with short lifespans and different lifestyles also feature a different pattern in cellular maintenance and repair. The combined effects of a low-metabolic lifestyle, low oxidative damage accumulation, and constant investment into cellular protection and tissue maintenance, appear to slow-down the process of physiological aging in A. islandica and to afford the extraordinarily long MLSP in this species. Standard metabolic rates were lower in A. islandica when compared to the shorter-lived A. opercularis. Furthermore, A. islandica regulate mantle cavity water PO2 to mean values < 5 kPa, a PO2 at which the formation of reactive oxygen species (ROS) in isolated gill tissues of the clams was found to be 10 times lower than at normoxic conditions (21 kPa). Burrowing and metabolic rate depression (MRD) in Icelandic specimens were more pronounced in winter, possibly supported by low seawater temperature and food availability, and seem to be key energy-saving and life-prolonging parameters in A. islandica. The signaling molecule nitric oxide (NO) may play an important role during the onset of MRD in the ocean quahog by directly inhibiting cytochome-c-oxidase at low internal oxygenation upon shell closure. In laboratory experiments, respiration of isolated A. islandica gills was completely inhibited by chemically produced NO at low experimental PO2 <= 10 kPa. During shell closure, mantle cavity water PO2 decreased to 0 kPa for longer than 24 h, a state in which ROS production is supposed to subside. Compared to other mollusk species, onset of anaerobic metabolism is late in A. islandica in the metabolically reduced state. Increased accumulation of the anaerobic metabolite succinate was initially detected in the adductor muscle of the clams after 3.5 days under anoxic incubation or in burrowed specimens. A ROS-burst was absent in isolated gill tissue of the clams following hypoxia (5 kPa)-reoxygenation (21 kPa). Accordingly, neither the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), nor the specific content of the ROS-scavenger glutathione (GSH) was enhanced in different tissues of the ocean quahog after 3.5 days of self-induced or forced hypoxia/anoxia to prepare for an oxidative burst. While reduced ROS formation compared to routine levels lowers oxidative stress during MRD and also during surfacing, the general preservation of high cellular defense and the efficient removal and replacement of damaged cells over lifetime seem to be of crucial importance in decelerating the senescent decline in tissues of A. islandica. Along with stable antioxidant protection over 200 years of age, proliferation rates and apoptosis intensities in most investigated tissues of the ocean quahog were low, but constant over 140 years of age. Accordingly, age-dependent accumulations of protein and lipid oxidation products are lower in A. islandica tissues when compared to the shorter-lived bivalve A. opercularis. The short-lived swimming scallop is a model bivalve species representing the opposite life and aging strategy to A. islandica. In this species permanently high energy throughput, reduced investment into antioxidant defense with age, and higher accumulation of oxidation products are met by higher cell turnover rates than in the ocean quahog. The only symptoms of physiological change over age ever found in A. islandica were decreasing cell turnover rates in the heart muscle over a lifetime of 140 years. This may either indicate higher damage levels and possibly ongoing loss of functioning in the heart of aging clams, or, the opposite, lower rates of cell damage and a reduced need for cell renewal in the heart tissue of A. islandica over lifetime. Basic physiological capacities of different A. islandica populations, measured at controlled laboratory conditions, could not explain considerable discrepancies in population specific MLSPs. For example, levels of tissue-specific antioxidant capacities and cell turnover rates were similarly high in individuals from the German Bight and from Iceland. Rather than genetic differences, the local impacts of environmental conditions on behavioral and physiological traits in the ocean quahog seem to be responsible for differences in population-specific MLSPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994-1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 µM C and 4 to 5.5 µM N seasonally, resulting in a mean C : N molar ratio of 14.4±2.2. The highest surface concentrations varied little during individual summer periods, indicating that net TOC production ceased during the highly oligotrophic summer season. Winter overturn and mixing of the water column were both the cause of concentration reductions and the trigger for net TOC production each year following nutrient entrainment and subsequent new production. The net production of TOC varied with the maximum in the winter mixed-layer depth (MLD), with greater mixing supporting the greatest net production of TOC. In winter 1995, the TOC stock increased by 1.4 mol C/m**2 in response to maximum mixing depths of 260 m. In subsequent years experiencing shallower maxima in MLD (<220 m), TOC stocks increased <0.7 mol C/m**2. Overturn of the water column served to export TOC to depth (>100 m), with the amount exported dependent on the depth of mixing (total export ranged from 0.4 to 1.4 mol C/m**2/yr). The exported TOC was comprised both of material resident in the surface layer during late summer (resident TOC) and material newly produced during the spring bloom period (fresh TOC). Export of resident TOC ranged from 0.5 to 0.8 mol C/m**2/yr, covarying with the maximum winter MLD. Export of fresh TOC varied from nil to 0.8 mol C/m**2/yr. Fresh TOC was exported only after a threshold maximum winter MLD of ~200 m was reached. In years with shallower mixing, fresh TOC export and net TOC production in the surface layer were greatly reduced. The decay rates of the exported TOC also covaried with maximum MLD. The year with deepest mixing resulted in the highest export and the highest decay rate (0.003 1/d) while shallow and low export resulted in low decay rates (0.0002 1/d), likely a consequence of the quality of material exported. The exported TOC supported oxygen utilization at dC : dO2 molar ratios ranging from 0.17 when TOC export was low to 0.47 when it was high. We estimate that exported TOC drove 15-41% of the annual oxygen utilization rates in the 100-400 m depth range. Finally, there was a lack of variability in the surface-layer TON signal during summer. The lack of a summer signal for net TON production suggests a small role for N2 fixation at the site. We hypothesize that if N2 fixation is responsible for elevated N : P ratios in the main thermocline of the Sargasso Sea, then the process must take place south of Bermuda and the signal transported north with the Gulf Stream system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the recorded rare earth element (REE) chemistry of Japan Sea sediments are evaluated by investigating REE total abundances and relative fractionations in 59 samples from Ocean Drilling Program Leg 127. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 (Yamato Basin) overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the late Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. Sum REE at Site 795 (Japan Basin) also is affiliated strongly with aluminosilicate phases, yet is diluted only slightly by siliceous input. At Site 797 (Yamato Basin), REE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. The biogenic influence is largest at Site 794, moderately developed at Site 797, and of only minor importance at Site 795, reflecting basinal contrasts in productivity such that the Yamato Basin records greater biogenic input than the Japan Basin, while the most productive waters overlie the easternmost sequence of Site 794. Ce/Ce* profiles at all three sites increase monotonically with depth, and record progressive diagenetic LREE fractionation. The observed Ce/Ce* record does not respond to changes in oxygenation state of the overlying water, and Ce/Ce* correlates slightly better with depth than with age. The downhole increase in Ce/Ce* at Site 794 and Site 797 is a passive response to diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and La_n/Yb_n suggests that other processes are occurring which mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column, and that an additional ~38% is recycled at or near the seafloor (data from Masuzawa and Koyama, 1989). Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply-buried interstitial waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the blood of Antarctic notothenioid and Arctic gadiform fishes, freezing is inhibited by antifreeze glycopeptide macromolecules (AFGP). These antifreeze molecules are built up of repeating tripeptide units (Ala-Ala-Thr)n, to which the disaccharide fl-D-galactosyl-(1->3)a-N-acetyl-D-galactosamine is linked through the hydroxyl oxygen of the threonyl residue. Species of Liparididae, Zoarcidae, Cottidae and Pleuronectidae synthezise only unglycosylated antifreeze peptides (AFP). It could be demonstrated for the Antarctic silverfish Pleuragramma antarcticum that the synthesis of AFGP is not constitutive but rather regulated by water temperature. Moreover a novel glycopeptid was isolated and characterised from P. antarcticum, the Pleuragramma-antifreeze glycopeptid (PAGP). The level of antifreeze concentration was dependent on the ambient water temperature, the depth of distribution, the life cycle and the evolution of the species. Surprisingly, detectable AFGPs in perciform fish of the Antarctic and gadiform fish of the Arctic and Antarctic could illustrate, that before the continental drift occurred a precursor glycopeptid existed, and that the existence of freezing resistance in some species reflects the past glaciation. The wide distribution and high heterogeneity of AFPs point to the assumption that these peptides are results of cold shock stress responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 µatm) and high (1,960 µatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm/a. Derived Sr/Ca-sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol/mol, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca-SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol/mol) = 11.82 (±0.13) - 0.058 (±0.004) * ext (mm/a) - 0.092 (±0.005) * SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca-SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca-SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were >5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca-SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.