30 resultados para decentralised data fusion framework
Resumo:
To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50 soil pedons. These were classified according to the U.S.D.A. Soil Taxonomy and fall mostly into the Gelisol soil order used for permafrost-affected soils. Soil profiles have been sampled for the active layer (mean depth 58±10 cm) and the upper permafrost to one meter depth. We analyze SOC stocks and key soil properties, i.e. C%, N%, C/N, bulk density, visible ice and water content. These are compared for different landscape groupings of pedons according to geomorphology, soil and land cover and for different vertical depth increments. High vertical resolution plots are used to understand soil development. These show that SOC storage can be highly variable with depth. We recommend the treatment of permafrost-affected soils according to subdivisions into: the surface organic layer, mineral subsoil in the active layer, organic enriched cryoturbated or buried horizons and the mineral subsoil in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2±2.0 kg C/m**2. Our results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m**2 followed by the Holocene river terrace. The Pleistocene terrace affected by thermal-degradation, the recent floodplain and bare alluvial sediments store considerably less SOC in descending order.
Resumo:
A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last GlacialeInterglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and d18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other Mediterranean shallow-shelf settings.
Resumo:
The Global and Russian Energy Outlook up to 2040, prepared by the Energy Research Institute of the Russian Academy of Sciences and the Analytical Center for the Government of the Russian Federation, analyses the long-term changes in the main energy markets and thereby identifies the threats to the Russian economy and energy sector. Research has shown that shifts in the global energy sector, especially in hydrocarbon markets (primarily the development of technologies for shale oil and gas extraction), will result in a slowdown of Russia's economy by one percentage point each year on average due to a decrease in energy exports comparison with the official projections. Owing to the lack of development of an institutional framework, an outdated tax system, low competition and low investment efficiency, Russia will be the most sensitive to fluctuations in global hydrocarbon markets among all major energy market players within the forecast period.
Resumo:
Marine mammals forage in dynamic environments characterized by variables that are continuously changing in relation to large-scale oceanographic processes. In the present study, behavioural states of satellite-tagged juvenile southern elephant seals (n = 16) from Marion Island were assessed for each reliable location, using variation in turning angle and speed in a state-space modelling framework. A mixed modelling approach was used to analyse the behavioural response of juvenile southern elephant seals to sea-surface temperature and proximity to frontal and bathymetric features. The findings emphasised the importance of frontal features as potentially rewarding areas for foraging juvenile southern elephant seals and provided further evidence of the importance of the area west of Marion Island for higher trophic-level predators. The importance of bathymetric features during the transit phase of juvenile southern elephant seal migrations indicates the use of these features as possible navigational cues.
Resumo:
A new technique for the harmonic analysis of current observations is described. It consists in applying a linear band pass filter which separates the various species and removes the contribution of non-tidal effects at intertidal frequencies. The tidal constituents are then evaluated through the method of least squares. In spite of the narrowness of the filter, only three days of data are lost through the filtering procedure and the only requirement on the data is that the time interval between samples be an integer fraction of one day. This technique is illustrated through the analysis of a few French current observations from the English Channel within the framework of INOUT. The characteristics of the main tidal constituents are given.
Resumo:
Cloud samples for the isotopic analysis were collected in the framework of the Hill Cap Cloud Thuringia 2010 (HCCT-2010) campaign on Schmücke (50° 39'N/ 10° 46'E, 937 m a.s.l.; Germany) in September and October 2010 with a three-stage Caltech Active Strand Cloudwater Collector (CASCC) during 13 different cloud events with a temporal resolution of 1 to 3 hours. In a first step, we ensured that no additional fractionation occurred during sampling with the CASCC. The d values of the three sizes classes of the CASCC (4 µm to 16 µm, 16 µm to 22 µm and >22 µm) did not differ significantly, revealing that the cloud droplets of different sizes quickly equilibrate their delta value with the one of the surrounding vapor. delta values in the cloud droplets varied from -77 per mil to -15 per mil in d2H and from -12.1 per mil to -3.9 per mil in d18O and were fitted by d2H =7.8*d18O +13*10**-3. delta values decreased with temperature as well as towards the end of the campaign, representing a seasonal trend which is known from d values in precipitation. The deuterium excess of the cloud samples was generally higher than the Local Meteoric Water Line of the closest GNIP (Global Network of Isotopes in Precipitation) station. Rain decreases its deuterium excess during falling through an unsaturated air column, while the cloud droplets conserve the deuterium excess of the initial evaporation and thus have been found to be a good indicator for the airmass source region: higher deuterium excess was measured for polar air masses and lower deuterium excess for Mediterranean air masses. Changes in d values during one cloud event were up to 3.6 per mil (d2H) and 0.23 per mil (d18O), except for frontal passages, which were associated with increases of ~6 per mil per hour (d2H) and ~0.6 per mil per hour (d18O). Using a box model, we showed that the influence of condensation only was able to explain the variation in the isotope signal of two cloud passages. Consequently, we deduced that the water vapor "feeding" the cloud advected the measured changes. A trajectory analysis and moisture source diagnostic revealed that it is very likely that the variations were either related to rain out along the trajectories or to meteorological changes in the moisture source region. This was the first study using stable water isotopologues in cloud water manifesting their potential in the context of atmospheric water vapor circulation.
Resumo:
Maritime accidents involving ships carrying passengers may pose a high risk with respect to human casualties. For effective risk mitigation, an insight into the process of risk escalation is needed. This requires a proactive approach when it comes to risk modelling for maritime transportation systems. Most of the existing models are based on historical data on maritime accidents, and thus they can be considered reactive instead of proactive. This paper introduces a systematic, transferable and proactive framework estimating the risk for maritime transportation systems, meeting the requirements stemming from the adopted formal definition of risk. The framework focuses on ship-ship collisions in the open sea, with a RoRo/Passenger ship (RoPax) being considered as the struck ship. First, it covers an identification of the events that follow a collision between two ships in the open sea, and, second, it evaluates the probabilities of these events, concluding by determining the severity of a collision. The risk framework is developed with the use of Bayesian Belief Networks and utilizes a set of analytical methods for the estimation of the risk model parameters. The model can be run with the use of GeNIe software package. Finally, a case study is presented, in which the risk framework developed here is applied to a maritime transportation system operating in the Gulf of Finland (GoF). The results obtained are compared to the historical data and available models, in which a RoPax was involved in a collision, and good agreement with the available records is found.
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.