250 resultados para coastal groundwater discharge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ?87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernförde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large-scale environmental patterns in the Humboldt Current System (HCS) show major changes during strong El Niño episodes, leading to the mass mortality of dominant species in coastal ecosystems. Here we explore how these changes affect the life-history traits of the surf clam Mesodesma donacium. Growth and mortality rates under normal temperature and salinity were compared to those under anomalous (El Niño) higher temperature and reduced salinity. Moreover, the reproductive spatial-temporal patterns along the distribution range were studied, and their relationship to large-scale environmental variability was assessed. M. donacium is highly sensitive to temperature changes, supporting the hypothesis of temperature as the key factor leading to mass mortality events of this clam in northern populations. In contrast, this species, particularly juveniles, was remarkably tolerant to low salinity, which may be related to submarine groundwater discharge in Hornitos, northern Chile. The enhanced osmotic tolerance by juveniles may represent an adaptation of early life stages allowing settlement in vacant areas at outlets of estuarine areas. The strong seasonality in freshwater input and in upwelling strength seems to be linked to the spatial and temporal patterns in the reproductive cycle. Owing to its origin and thermal sensitivity, the expansion and dominance of M. donacium from the Pliocene/Pleistocene transition until the present seem closely linked to the establishment and development of the cold HCS. Therefore, the recurrence of warming events (particularly El Niño since at least the Holocene) has submitted this cold-water species to a continuous local extinction-recolonization process.