115 resultados para Water Source Areas
Resumo:
Samples of dust from the Greenland Ice Sheet Project 2 (GISP2) ice core, Summit, Greenland, dated within marine isotope stage 2 (between 23,340 and 26,180 calendar years B.P.) around the time of the coldest, local, last glacial temperatures, have been analyzed to determine their provenance. To accomplish this, we have compared them with approximately Coeval aeolian sediments (mostly loesses) sampled in possible source areas (PSAs) from around the northern hemisphere. The <5-µm grain-size fraction of these samples was analyzed on the basis that it corresponds to the atmospheric dust component of that time and locale, which was sufficiently fine grained to be transported over long distances. On the basis of comparison of the clay mineralogy and Sr, Nd and Pb isotope composition with ice dust and PSAs and assuming that we have sampled the most important PSAs, we have determined that the probable source area of these GISP2 dusts was in eastern Asia. The dust was not derived from either the midcontinental United States or the Sahara, two more proximal areas that have been suggested as potential sources based on atmospheric circulation modeling. Except for a brief period during an interstadial, when dust transport was exceptionally low (for glacial times) and had a mineralogical composition indicative of a slightly more southern provenance, the source area of the dust did not change significantly during times of variably higher fluxes of dust with larger mean grain size or lower fluxes of dust with smaller mean grain size. This includes the high-dust period that correlates with the Heinrich 2 period of major iceberg discharge into the North Atlantic. Variable wind strengths must therefore be invoked to account for these abrupt and significant changes in dust flux and grain size.
Resumo:
This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.
Resumo:
Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.
Resumo:
Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.
Resumo:
Reconstructing terrestrial water budgets is of prime importance for understanding past climate and environment. To shed more light on how plant-wax derived n-alkanes may be used for this purpose we investigated the distribution and stable isotopic compositions of hydrogen (dD) and carbon (d13C) of plant-wax derived n-C29 and -C31 alkanes in terrestrial, coastal and offshore surface sediments in relation to hydrology along a NW-SE transect east of the Italian Apennines from the Po River to the Eastern Gulf of Taranto. The plant wax average chain length increases southward and may relate to increasing temperature and/or aridity. The plant wax dD of the terrestrial and coastal samples also increases southward and mainly reflects changes in the dD of precipitation. The d13C of plant waxes is primarily interpreted in terms of C3 vegetation changes rather than varying contributions by C4 plants. The plant wax d13C-dD composition of the Po River and Apennine rivers differs considerably from that in southern Italy, and suggests a mainly southern source for plant waxes in marine sediments of the Gulf of Taranto. This calibration provides a basis for the reconstruction of past changes in the Italian water balance and n-alkane source areas.
Resumo:
Climatic and oceanographic variations during the last 2 m.y. of the Maastrichtian inferred from high-resolution (10 k.y.) stable isotope analysis of the mid-latitude South Atlantic Deep Sea Drilling Project Site 525 reveal a major warm pulse followed by rapid cooling prior to the Cretaceous-Tertiary boundary. Between 66.85 and 65.52 Ma, cool but fluctuating temperatures average 9.9 and 15.4°C in intermediate and surface waters, respectively. This interval is followed by an abrupt short-term warming between 65.45 and 65.11 Ma, which increased temperatures by 2-3°C in intermediate waters, and decreased the vertical thermal gradient to an average of 2.7°C. This warm pulse may be linked to increased atmospheric pCO2, increased poleward heat transport, and the switch of an intermediate water source from high to low-middle latitudes. During the last 100 k.y. of the Maastrichtian, intermediate and surface temperatures decreased by an average of 2.1 and 1.4°C, respectively, compared to the maximum temperature between 65.32 and 65.24 Ma.
Resumo:
Twenty percent (19 genera, 95 species) of cosmopolitan, deep-sea (500-4000 m), benthic foraminiferal species became extinct during the late Pliocene-Middle Pleistocene (3-0.12 Ma), with the peak of extinctions (76 species) occurring during the mid-Pleistocene Climate Transition (MPT, 1.2-0.55 Ma). One whole family (Stilostomellidae, 30 species) was wiped out, and a second (Pleurostomellidae, 29 species) was decimated with just one species possibly surviving through to the present. Our studies at 21 deep-sea core sites show widespread pulsed declines in abundance and diversity of the extinction group species during more extreme glacials, with partial interglacial recoveries. These declines started in the late Pliocene in southern sourced deep water masses (Antarctic Bottom Water, Circumpolar Deep Water) and extending into intermediate waters (Antarctic Intermediate Water, North Atlantic Deep Water) in the MPT, with the youngest declines in sites farthest downstream from high-latitude source areas for intermediate waters. We infer that the unusual apertural types that were targeted by this extinction period were adaptations for a specific kind of food source and that it was probably the demise of this microbial food that resulted in the foraminiferal extinctions. We hypothesize that it may have been increased cold and oxygenation of the southern sourced deep water masses that impacted on this deep water microbial food source during major late Pliocene and Early Pleistocene glacials when Antarctic ice was substantially expanded. The food source in intermediate water was not impacted until major glacials in the MPT when there were significant expansion of polar sea ice in both hemispheres and major changes in the source areas, temperature, and oxygenation of global intermediate waters.
Resumo:
The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.
Resumo:
A geochemical analysis is conducted on hemipelagic sediments at ODP Leg 162, Site 907, North Atlantic. On the basis of major and minor element concentrations, the sequence is divided into five units. Geochemical data reveal that the sediments originated from two specific source areas, i.e., continental icerafted debris (IRD) and Icelandic basalt. In the upper part (lithological units I and II, 0 to 63.1 meters below sea floor (mbsf)), sediments were derived from continental IRD, whereas in the lower part, sediments (lithological units III, IV, and V, below 63.1 mbsf) comprise mixture of continental IRD and minor supply from the Icelandic basalt. The ratio of TiO2/Al2O3 to SiO2 content and the Th to Ti/Al molar ratio clearly provide a key to discriminate provenances. The change in source area is most likely related to the oceanographic and climatic evolution in the North Atlantic since the middle Miocene. Biogenic fossil-barren intervals (Units II and V) are considered as a consequence of dissolution caused by oceanic circulation. The timing of IRD initiation confers with that of geochemical analysis. Total organic carbon to total nitrogen (C/N) ratio shows a striking variation in the entire core. The C/N ratios exceed 10 below approximately 196 mbsf (lithological unit V) with a gradual downward increase. This suggests that terrigenous organic matters have been supplied from the neighboring continents. The total organic carbon to total sulfur (C/S) ratio also shows such possibility as well as diagenetic changes in Units IV and V. The carbonate-barren intervals presented in Units II and V, and intermittently in Units III and IV are interpreted as a consequence of dissolution effect related with climatic variation and deep-water circulation. Additional low surface productivity was considerable.
Resumo:
In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.
Resumo:
Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.