231 resultados para Versailles, Treaty of, June 28, 1919 (Germany)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ESR dating method was applied to marine shells taken from a sediment core from Dagebüll, Schleswig-Holstein. Four samples from two different depths of the core (17.5 m and 25-26 m), separated by a 2.76 meter thick clay layer (Turritella Clay), yielded identical ages within the limits of error. They indicated an assignment to the oxygen isotope stage 5, thus confirming the stratigraphic age. In addition, the ESR-ages confirm the interpretation of Lomitschka et al. (1997, doi:10.2312/meyniana.1997.49.85), that the Th/U-ages of shells below the clay layer are reliable, whereas shells located above the clay layer, which were strongly influenced by percolating groundwaters of an open system, yielded falsified Th/U-ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den Jahren 1973 bis 1978 erfolgten umfangreiche mikrobiologische-ökologische Untersuchungen in der Elbe und in einigen kleineren Flüssen Schleswig-Holsteins sowie im Nordostseekanal. In diesem Zusammenhang wurden verschiedene bateriologische und eine Reihe von hydrographisch-chemischen Parametern bestimmt. Die Daten geben Auskunft über den bakteriologischen Zustand der Gewässer in Abhängigkeit von Schwankungen der wichtigsten hydrographischen Faktoren insbsosondere der Temperatur und Wasserführung. Weiter ermöglichen sie Aussagen über die Abwasserbelastung der untersuchten Flüsse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain insights into the mechanisms of abrupt climate change within interglacials, we have examined the characteristics and spatial extent of a prominent, climatically induced vegetation setback during the Holsteinian interglacial (Marine Isotope Stage 11c). Based on analyses of pollen and varves of lake sediments from Dethlingen (northern Germany), this climatic oscillation, here termed the "Older Holsteinian Oscillation" (OHO), lasted 220 years. It can be subdivided into a 90-year-long decline of temperate tree taxa associated with an expansion of Pinus and herbs, and a 130-year-long recovery phase marked by the expansion of Betula and Alnus, and the subsequent recovery of temperate trees. The climate-induced nature of the OHO is corroborated by changes in diatom assemblages and ?18O measured on biogenic silica indicating an impact on the aquatic ecosystem of the Dethlingen paleolake. The OHO is widely documented in pollen records from Europe north of 50° latitude and is characterized by boreal climate conditions with cold winters from the British Isles to Poland, with a gradient of decreasing temperature and moisture availability, and increased continentality towards eastern Europe. This pattern points to a weakened influence of the westerlies and/or a stronger influence of the Siberian High. A comparison of the OHO with the 8.2 ka event of the Holocene reveals close similarities regarding the imprint on terrestrial ecosystems and the interglacial boundary conditions. Hence, in analogy to the 8.2 ka event, a transient, meltwater-induced slowdown of the North Atlantic Deep Water formation appears as a plausible trigger mechanism for the OHO. If correct, meltwater release into the North Atlantic may be a more common agent of abrupt climate change during interglacials than previously thought. We conclude that meltwater-induced climate setbacks during interglacials preferentially occurred when low rates of summer insolation increase during the preceding terminations facilitated the persistence of large-scale continental ice-sheets well into the interglacials.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: