290 resultados para US Geological Survey


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1974, the Geological Survey of Japan began its systematic investigation of manganese nodules in the Central Pacific Basin on the new geological research vessel Hakurei Maru. The first cruise (GH 74-5) was carried out over an eastern part area of the Basin (6°-10°30'N, 164°30'-171°30'W), and the authors report here the preliminary results on the occurrence of manganese nodule deposits, paying particular consideration to their relationship to submarine topography and surficial and sub-bottom sedimentary facies. The surveyed area comprises a deep-sea basin at 5,000-5,400 m, defined to the north and east by the chain of seamounts and guyots of the Christmas Ridge. The deep-sea basin is divided roughly into 2 contrasting topographic features. The eastern part is characterised by flattened topography resulting from continuous deposition of turbidities; the meridian and western parts are characterised by gently rolling topography and the existence of a large number of deep-sea hills. Manganese nodules are almost lacking in the former flattened eastern area, whereas they are widely distributed in the latter rolling meridian and western parts. The population density of nodules varies from less than 1 Kg/m² to 26 kg/m² and the higher density is found in the siliceous-calcareous ooze zone of rather small, flat basins surrounded by deep-sea hills. The density is closely related to the thickness of the transparent layer obtained by 3.5 kHz PDR profiling over the whole area. Considering the various data of grab sampling, 3.5 kHz PDR profiling and to a lesser extent of deep-sea television and camera observations, the most promising manganese field in the present area seems to be confined to the north of the western sector of the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacier thickness is an important factor in the course of glacier retreat in a warming climate. Thiese study data presents the results (point data) of GPR surveys on 66 Austrian mountain glaciers carried out between 1995 and 2014. The glacier areas range from 0.001 to 18.4 km**2, and their ice thickness has been surveyed with an average density of 36 points/km**2 . The glacier areas and surface elevations refer to the second Austrian glacier inventory (mapped between 1996 and 2002). According to the glacier state recorded in the second glacier inventory, the 64 glaciers cover an area of 223.3±3.6 km**3. Maps of glacier thickness have been calculated by Fischer and Kuhn (2013) with a mean thickness of 50±3 m and contain an glacier volume of 11.9±1.1 km**3. The mean maximum ice thickness is 119±5 m. The ice thickness measurements have been carried out with the transmitter of Narod and Clarke (1994) combined with restively loaded dipole antennas (Wu and King, 1965; Rose and Vickers, 1974) at central wavelengths of 6.5 (30 m antenna length) and 4.0 MHz (50 m antenna length). The signal was recorded trace by trace with an oscilloscope. 168 m/µs as used by Haeberli et al. (1982), Bauder (2001), and Narod and Clarke (1994), the signal velocity in air is assumed to be 300 m/µs. Details on the method can be are found in Fischer and Kuhn (2013), as well as Span et al. (2005) and Fischer et al. (2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Philipsburg district, in western Montana a low arch of a Paleozoic limestones has been cut and deformed on the east and a south sides by a small batholith of Tertiary granodiorite. The manganese deposits are confined to an area of about 2 square miles underlain by sedimentary rocks and adjacent to the granodiorite body. The ore, chiefly pyrolusite, was apparently derived from rhodochrosite that was abundant in the veins and had replaced the adjacent limestones. The oxide ore is found chiefly within 600 feet of the surface, though one small body was mined at a depth of 700 feet. Commonly these bodies are aggregates of nodules or spheroids that range in size from that of an egg to that of a coconut or larger. In some places they show an irregular texture somewhat like that of a sponge, and in others the material composing them is loose and friable and apparently structureless. Psilomelane is the principal constituent of many of the nodules, in which it forms layers that alternate with softer oxides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concentrically ringed manganese nodules, similar in form to many found on modern ocean and sea floors, occur in a very fine grained argillaceous sandstone bed of the Permian Park City Formation near Dillon, Montana. They are enriched in many rare elements and contain us much as 2.5 percent zinc, l.3 percent nickel, and 0.22 percent cobalt. The manganese minerals are chalcophanite and todorokite. The nodules probably formed in a shallow marine oxidizing environment on the western side of the Permian sedimentary basin. The occurrence of an appreciable amount of fluorite in the bed suggests that the water was saline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

X-ray fluorescence (XRF) core-scanning is a fast and nondestructive technique to assess elemental variations of unprocessed sediments. However, although the exposure time of XRF-scanning directly affects the scanning counts and total measurement time, only a few studies have considered the influence of exposure time during the scan. How to select an optimal exposure time to achieve reliable results and reduce the total measurement time is an important issue. To address this question, six geological reference materials from the Geological Survey of Japan (JLK-1, JMS-1, JMS-2, JSD-1, JSD-2, and JSD-3) were scanned by the Itrax-XRF core scanner using the Mo- and the Cr-tube with different exposure times to allow a comparison of scanning counts with absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in paleoenvironmental studies were examined for the different exposure times and X-ray tubes. The results show that for those elements with relatively high concentrations or high detectability, the correlation coefficients are higher than 0.90 for all exposure times. In contrast, for the low detectability or low concentration elements, the correlation coefficients are relatively low, and improve little with increased exposure time. Therefore, we suggest that the influence of different exposure times is insignificant for the accuracy of the measurements. Thus, caution must be taken when interpreting the results of elements with low detectability, even when the exposure times are long and scanning counts are reasonably high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.