46 resultados para Trade unions and union structure
Resumo:
Chlorophyll "a" and adenozine triphosphate (ATP) concentrations together with size structure of microplankton were investigated in January-April 1989 in the Indian Ocean and in the Weddell Sea. ATP values varied from 11 to 92 ng/l, and chlorophyll "a" concentrations varied from 0.04 to 0.27 µg/l in the Indian Ocean, with prevailing nanoplankton and picoplankton fractions. Both ATP and chlorophyll "a" concentrations increased 2 times to the south of 40°S; in the Weddell Sea they exceeded 400 ng/l and 0.6 µg/l, respectively. Cells of nanophytoplankton and microphytoplankton (mainly diatoms) prevailed in size spectra. Spatial variabilities of the parameters were within one order of magnitude; their values decreased 3-4 times during 1 month. Size structure changed due to increased portion of nanoplankton and picolankton. ATP concentrations in the photic layer (0-200 m) varied from 31.96 mg/m**2 in February to 8.02 mg/m**2 in March to April. ATP concentrations were 61.5 and 98.8 mg/m**2 at depths of 4200 and 4700 m, respectively.
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).
Resumo:
Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).