124 resultados para Summer monsoon onset


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eolian grain size and flux were measured on samples from 11 Arabian Sea sediment traps deployed 200-1250 km offshore. The timing of increased grain size is coincident with the onset of strong summer monsoon winds and dust storm activity over the Arabian Peninsula and Middle East. Data spanning a full annual cycle show that eolian grain size is highly correlated with barometric pressure (r=-0.91) and wind speed (r=0.84), enabling calibration of the downcore record in terms of these primary meteorological variables. Eolian flux is highly correlated with organic carbon flux (r=0.80); both increase 6-8 weeks after the grain size increase and summer monsoon onset. This lag, and the low correlation between eolian grain size and eolian flux (r=0.36), likely result from the differential sinking rates of large and small dust particles in the surface waters as well as biological scavenging associated with monsoon-induced productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30 X 8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatiotemporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grainsize fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early tomid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reconstruction of northwest African summer monsoon strength during the cold marine isotopic stage (MIS) 6 indicates a link to the seasonal migration of the Intertropical Convergence Zone (ITCZ). High-resolution studies of eolian dust supply and sea surface temperature recorded in marine core MD03-2705, on the Mauritanian margin, provide a better understanding about the penultimate glacial history of northwestern African aridity/humidity and upwelling coastal activity. Today, site MD03-2705 experiences increased upwelling and dust flux during the winter months, when the ITCZ is in a southerly position. Analyses of foraminifera isotopic composition suggest that during MIS 6.5 (180-168 ka) the average position of the ITCZ migrated north, marked by an increase in the strength of the summer monsoon, which decreased eolian dust transport and the coastal upwelling activity. The northward migration is in phase with a specific orbital combination of a low precessional index with a high obliquity signal. High-resolution analysis of stable isotopes (d18O and d13C) and microscale resolution geochemical (Ti/Al and quartz grain counts) determinations reveal that the transition between monsoonal humid (MIS 6.5) and dry (MIS 6.4) conditions has occurred in less than 1.3 ka. Such rapid changes suggest a nonlinear link between the African monsoonal rainfall system and environmental changes over the continent. This study provides new insights about the influence of vegetation and oceanic temperature feedbacks on the onset of African summer monsoon and demonstrates that, during the penultimate glacial period, changes in tropical dynamics had regional and global impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The astronomical timescale of the Eastern Mediterranean Plio-Pleistocene builds on tuning of sapropel layers to Northern Hemisphere summer insolation maxima. A 3000-year precession lag has become instrumental in the tuning procedure as radiocarbon dating revealed that the midpoint of the youngest sapropel, S1, in the early Holocene occurred approximately 3000 years after the insolation maximum. The origin of the time lag remains elusive, however, because sapropels are generally linked to maximum African monsoon intensities and transient climate modeling results indicate an in-phase behavior of the African monsoon relative to precession forcing. Here we present new high-resolution records of bulk sediment geochemistry and benthic foraminiferal oxygen isotopes from ODP Site 968 in the Eastern Mediterranean. We show that the 3000-year precession time lag of the sapropel midpoints is consistent with (1) the global marine isotope chronology, (2) maximum (monsoonal) precipitation conditions in the Mediterranean region and China derived from radiometrically dated speleothem records, and (3) maximum atmospheric methane concentrations in Antarctica ice cores. We show that the time lag relates to the occurrence of precession-paced North Atlantic cold events, which systematically delayed the onset of strong boreal summer monsoon intensity. Our findings may also explain a non-stationary behavior of the African monsoon over the past 3 million years due to more frequent and intensive cold events in the Late Pleistocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal?ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Niño-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal?ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Variations in the Indian summer monsoon (ISM) intensity during the last 16.7?ka have been studied using organic carbon (Corg), d15N of sedimentary organic matter, CaCO3, sediment texture, d18OC, and Mg/Ca-derived sea surface temperature, d18O of sea water and sea surface salinity, in a 14C-dated sediment core from the eastern Arabian Sea. The d18O in water and planktonic foraminifera shells off the central west coast of India may be controlled by the ISM intensity as this area receives high precipitation and land runoff. Also, the Corg and CaCO3 contents of sediments and d15N of sedimentary organic matter may be linked to ISM-induced productivity and denitrification. The results of the present study reveal that between 16 and 15.2 ka BP, the ISM was weak with minor fluctuations and started intensifying around 15.2 ka BP, at the onset of the Bølling-Ållerød (B-A) event. The B-A event is characterized by higher water column denitrification rates comparable to the present day. The ISM signatures observed in the d18OC record of B-A event compare well with those from Timta cave of the western Himalayas and also the Asian summer monsoon signatures from the Hulu caves in China and warming signatures in Greenland Ice Sheet Project 2 (GISP2) suggesting atmospheric teleconnections through Intertropical Convergence Zone. The boundary between the Younger Dryas and the Holocene is discernible with small episodes of abrupt events of increased ISM intensity. This decrease in d18OC values at ~11.8 ka BP is contemporary with June solar insolation maximum at 30° north and the increase in methane in the GISP2 ice core supporting episodes of warmer climate and increase in ISM intensity. The ISM seems to have been most stable between 7 and 5.6 ka BP. The core exhibits periodicity of 500 years that is comparable to the Atlantic water formation and the Chinese monsoon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study based on X-ray chronologies and the stable isotopic composition of fossil Porites spp. corals from the northern Gulf of Aqaba (Red Sea) covering the mid-Holocene period from 5750 to 4450 14C years BP (before present). The stable oxygen and carbon isotopic compositions of five specimens reveal regular annual periodicities. Compared with modern Porites spp. from the same environment, the average seasonal delta18O amplitude of the fossil corals is higher (by ca. 0.35-0.60?), whereas annual growth rates are lower (by ca. 3.5 to 2 mm/year). This suggests stronger seasonality of sea surface temperatures and increased variability of the oxygen isotopic composition of the sea water due to changes in the precipitation and evaporation regime during the mid-Holocene. Most likely, summer monsoon rains reached the northern end of the Red Sea at that time. Average annual coral growth rates are diminished probably due to an increased input and resuspension of terrestrial debris to the shallow marine environment during more humid conditions. Our results corroborate published reports of paleodata and model simulations suggesting a northward migration of the African monsoon giving rise to increased seasonalities during the mid-Holocene over northeastern Africa and Arabia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two cores from the southern South China Sea contain discrete ash layers that mainly consist of rhyolithic glass shards. On the basis of the SPECMAP time scale, the ash layers were dated to ca. 74 ka, the age of the youngest Toba eruption in northern Sumatra. This link is supported by the chemical composition of the glass, which is distinct from volcanic glass supplied from the Philippines and the northern South China Sea, but is almost identical with the chemistry of the Toba ash. The youngest Toba ash layers in the South China Sea expand the previously known ash-fall zone over more than 1800 km to the east. The dispersal of ashes from Sumatra in both western and eastern directions indicates two contrasting wind directions and suggests that (1) the Toba eruption probably happened during the Southeast Asian summer monsoon season, and (2) the volume of erupted magma was larger than previously interpreted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides an overview of dust transport pathways and concentrations over the Arabian Sea during 1995. Results indicate that the transport and input of dust to the region is complex, being affected by both temporally and spatially important processes. Highest values of dust were found off the Omani coast and in the entrance to the Gulf of Oman. Dust levels were generally lower in summer than the other seasons, although still relatively high compared to other oceanic regions. The Findlater jet, rather than acting as a source of dust from Africa, appears to block the direct transport of dust to the open Arabian Sea from desert dust source regions in the Middle East and Iran/Pakistan. Dust transport aloft, above the jet, rather than at the surface, may be more important during summer. In an opposite pattern to dust, sea salt levels were exceedingly high during the summer monsoon, presumably due to the sustained strong surface winds. The high sea salt aerosols during the summer months may be impacting on the strong aerosol reflectance and absorbance signals over the Arabian Sea that are detected by satellite each year.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last glacial period, the North Atlantic region experienced pronounced, millennial-scale alternations between cold, stadial conditions and milder interstadial conditions-commonly referred to as Dansgaard-Oeschger oscillations-as well as periods of massive iceberg discharge known as Heinrich events. Changes in Northern Hemisphere temperature, as recorded in Greenland, are thought to have affected the location of the Atlantic intertropical convergence zone and the strength of the Indian summer monsoon. Here we use high-resolution records of sediment colour-a measure of terrigenous versus biogenic content-from the Cariaco Basin off the coast of Venezuela and the Arabian Sea to assess teleconnections with the North Atlantic climate system during the last glacial period. The Cariaco record indicates that the intertropical convergence zone migrated seasonally over the site during mild stadial conditions, but was permanently displaced south of the basin during peak stadials and Heinrich events. In the Arabian Sea, we find evidence of a weak Indian summer monsoon during the stadial events. The tropical records show a more variable response to North Atlantic cooling than the Greenland temperature records. We therefore suggest that Greenland climate is especially sensitive to variations in the North Atlantic system-in particular sea-ice extent-whereas the intertropical convergence zone and Indian monsoon system respond primarily to variations in mean Northern Hemisphere temperature.