352 resultados para Submarine warfare.
Resumo:
Scandium and lanthanum were analyzed using neutron activation and ICP-MS methods in 60 samples of oceanic phosphorites of various composition and age recovered from continental margins and seamounts in the Atlantic and Pacific Oceans. In the samples studied scandium content ranges from 0.1 to 60 ppm, lanthanum content ranges from 0.4 to 513 ppm, and La/Sc ratio varies from 1.1 to 114. The lowest scandium content occurs in recent phosphorite nodules, intermediate - in Pleistocene phosphatic sand, and the highest - in ancient seamount phosphorites. Process of scandium accumulation in the phosphorites is mainly controlled by their specific surface area and duration of their contact with ocean water. Lanthanum concentrates in the phosphorites much more intensely than scandium. Correlation between scandium and lanthanum distribution is weak, and it appears only when average concentrations of these elements in various groups of samples are compared.
Resumo:
Qualitative and quantitative food composition, as well as intensity of feeding of beryx-alfonsino Beryx splendens was examined on banks near the Azores. Data are presented with respect to size groups and taking into account type of feeding of males and females. Crustaceans and fishes were constituents of their feeding ration. A tendency toward increase in the number of consumed fishes in the course of ontogenetic development of beryx-alfonsino was noted. Beryx-alfonsino was shown to occupy the trophic level of consumers of the third order performing function of a deep-water predator.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
On the base of data of Cruise 40 of R/V Akademik Keldysh features of formation of saline composition of interstitial waters from sediments containing free hydrocarbons (methane) and gas hydrates (CH4 x 6H2O) were considered. Chemical composition of the interstitial waters is presented for three zones of sediments from the Haakon Mosby submarine mud volcano: (1) zone of kettles containing free hydrocarbons, (2) gas hydrate sediments, and (3) periphery of the volcano. Abnormally high concentrations of bromine and especially iodine characteristic of the interstitial and particularly of the oil-field waters were found. Because of a great interest in natural gas hydrates found in marine sediments, we obtained a possibility to supplement scarce of available published data with some new information.
Resumo:
Results of a complex study of the sedimentary cover (continuous seismic profiling and diatom analysis) in the northeastern Sea of Japan including the Bogorov Rise an adjacent part of the Japan Basin and the continental slope, are presented. Two varied-age complexes were distinguished in the sedimentary cover of the continental slope of Primorye: Middle Miocene and Late Miocene - Pleistocene. These complexes formed in a stable tectonic setting with no significant vertical movements. A depression in the acoustic basement is located along the continental slope and it is divided from the Japan Basin by a group of volcanic structures, the most uplifted part of which forms the Bogorov Rise. The depression probably formed before Middle Miocene. In Middle Miocene the Bogorov Rise was already at depths close to modern ones. In the sedimentary cover near the Bogorov Rise buried zones were found. Probably they were channels for gas transportation in pre-Pleistocene. Deformations of sediments that occurred in the beginning of Pleistocene are established in the basin.
Resumo:
Based on a high-resolution sediment record from a submarine meandering canyon system offshore the present-day hyperarid Saharan Africa, two phases of turbidity-current activity can be distinguished during the past 13,000 years. Frequent, siliciclastic turbidity currents can be related to deglacial sea-level history, whereas rhythmically recurring fine-grained and carbonate-rich turbidity currents with recurrence times of roughly 900 years are inferred for the Holocene. Various trigger mechanisms can be considered to initiate turbidity currents, but only a few can explain a periodic turbidite activity. A comparison of Holocene turbidite recurrence times and basic cycles of 900 and 1,800 years found in various Holocene paleoclimate studies suggests that a previously unrecognized climate-related coupling may be active.
Resumo:
The Ontong Java Plateau in the western Pacific is anomalous compared to other oceanic large igneous provinces in that it appears to have never formed a large subaerial plateau. Paleoeruption depths (at 122 Ma) estimated from dissolved H2O and CO2 in submarine basaltic glass pillow rims vary from ~1100 m below sea level (mbsl) on the central part of the plateau to 2200-3000 mbsl on the northeastern edge. Our results suggest maximum initial uplift for the plateau of 2500-3600 m above the surrounding seafloor and 1500+/-400 m of postemplacement subsidence since 122 Ma. Our estimates of uplift and subsidence for the plateau are significantly less than predictions from thermal models of oceanic lithosphere, and thus our results are inconsistent with formation of the plateau by a high-temperature mantle plume. Two controversial possibilities to explain the anomalous uplift and subsidence are that the plateau (1) formed as a result of a giant bolide impact, or (2) formed from a mantle plume but has a lower crust of dense garnet granulite and/or eclogite; neither of these possibilities is fully consistent with all available geological, geophysical, and geochemical data. The origin of the largest magmatic event on Earth in the past 200 m.y. thus remains an enigma.
Resumo:
Results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 of R/V Akademik Lavrent'ev in 2005 and 2006 are reported. The studied area is located at an near-island trench of the slope in the central part of the Kuril Island arc. Morphologically it consists of two parts: an inner volcanic arc represented by the Great Kuril Range and an outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks composing the basement and the sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the complexes reflects a tectonomagmatic stage in the ridge evolution. Geochemical and isotope data on the volcanics indicate contribution of ancient crustal material in the magma source and, correspondingly, formation of this structure on the continental basement. Two-stage model ages (TDM2) vary in a wide range from zero values in mafic rocks to 0.77 Ga in felsic varieties, pointing to presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. Values of (La/Sm)_n and (La/Yb)_n ratios vary from 0.74 and 0.84 in the tholeiitic varieties to 1.19 and 1.44 in the calc-alkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and formed during differentiation of magmatic melts that were channeled along fault zones from the mantle source slightly enriched in crustal component.
Resumo:
Fifteen submarine glasses from the East Pacific Rise (CYAMEX), the Kyushu-Palau Ridge (DSDP Leg 59) and the Nauru Basin (DSDP Leg 61) were analysed for noble gas contents and isotopic ratios. Both the East Pacific Rise and Kyushu-Palau Ridge samples showed Ne excess relative to Ar and a monotonic decrease from Xe to Ar when compared with air noble gas abundance. This characteristic noble gas abundance pattern (type 2, classified by Ozima and Alexander) is interpreted to be due to a two-stage degassing from a noble gas reservoir with originally atmospheric abundance. In the Kyushu-Palau Ridge sample, noble gases are nearly ten times more abundant than in the East Pacific Rise samples. This may be attributed to an oceanic crust contamination in the former mantle source. There is no correlation between the He content and that of the other noble gas in the CYAMEX samples. This suggests that He was derived from a larger region, independent from the other noble gases. Except where radiogenic isotopes are involved, all other noble gas isotopic ratios were indistinguishable from air noble gas isotopic ratios. The 3He/4He in the East Pacific Rise shows a remarkably uniform ratio of (1.21 +/- 0.07)*10**-5, while the40Ar/36Ar ranges from 700 to 5600.
Resumo:
Petrography of magmatic rocks collected from a submarine seamount on the Mid-Pacific Rise is briefly characterized. Variety of petrographic types of effusive rocks and xenoliths contained in them indicates complexity of geologic development and distinctive structure of the oceanic crust in the area under study.