815 resultados para St. Charles River
Resumo:
List of non-indigenous species (NIS) established in the Great Lakes-St. Lawrence River region and the North and Baltic Seas region, their geographic origin, and taxonomic assignment. Asterisks mark the NIS that occur in both the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. GL, SL, NW, NE, SW and SE denote the Great Lakes, St. Lawrence River, north-west, north-east, south-west, and south-east, respectively. Eurasia represents inland freshwaters except Yangtze River, Indo-Pacific represents Indian Ocean and the archipelago of Indonesia, Malaysia, and Pilipinas, North America (N America) represents inland freshwaters except the Laurentian Great Lakes, St. Lawrence and Mississippi Rivers, while Australia, New Zealand, Africa and South America (S America) cover all inland freshwaters in these areas.
Resumo:
It has long been recognized that the transition from the last glacial to the present interglacial was punctuated by a brief and intense return to cold conditions. This extraordinary event, referred to by European palynologists as the Younger Dryas, was centered in the northern Atlantic basin. Evidence is accumulating that it may have been initiated and terminated by changes in the mode of operation of the northern Atlantic Ocean. Further, it appears that these mode changes may have been triggered by diversions of glacial meltwater between the Mississippi River and the St. Lawrence River drainage systems. We report here Accelerator Mass Spectrometry (AMS) radiocarbon results on two strategically located deep-sea cores. One provides a chronology for surface water temperatures in the northern Atlantic and the other for the meltwater discharge from the Mississippi River. Our objective in obtaining these results was to strengthen our ability to correlate the air temperature history for the northern Atlantic basin with the meltwater history for the Laurentian ice sheet.
Resumo:
The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.