52 resultados para Southern Studies
Resumo:
A wealth of sedimentary records aimed at reconstructing late Quaternary changes in productivity and temperature have been devoted to understanding linkages between the Indo-Pacific Warm Pool (IPWP) and other distant oceanic areas. Most of these reconstructions are based, however, on biogeochemical and sedimentological proxies, with comparatively less attention devoted to microfossils. A high-resolution (<1 ka) study of diatom concentrations and the community at site GeoB10038-4, recovered off southern Sumatra (ca. 6°S, 103°E), closely tracks the variations of diatom concentrations in the westernmost IPWP during the last glacial-interglacial cycle. The diatom record provides evidence that diatom paleoproductivity was highest during interglacials, primarily due to the input of lithogenics and nutrients following the rise in sea level after full glacials. In addition, the co-variation of total diatom concentration and Northern Hemisphere forcing for Marine Isotope Stage 5 suggests a direct response of diatom productivity and upwelling intensity to boreal summer insolation. Temporal shifts of the diverse diatom community at site GeoB10038-4 correspond well with the present-day seasonal monsoon pattern and the strengthening and weakening phases of upwelling along the southern coast of Sumatra. Resting spores of Chaetoceros, typical of nutrient-rich waters, were dominant during periods of highest diatom paleoproductivity and responded to the strengthening of the SE monsoon, while diatoms of oligotrophic to mesotrophic waters characterized intermonsoon periods. The close correspondence between the dominance of upwelling diatoms and the boreal summer insolation resembles the present-day dynamics of diatom production. The observed interglacial highs and glacial lows of diatom productivity at site GeoB10038-4 is a unique pattern in the late Quaternary tropics.
Resumo:
During Ocean Drilling Program (ODP) Leg 177, seven sites were drilled aligned on a transect across the Antarctic Circumpolar Current in the Atlantic sector of the Southern Ocean. The primary scientific objective of Leg 177 was the study of the Cenozoic paleoceanographic and paleoclimatic history of the southern high latitudes and its relationship with the Antarctic cryosphere development. Of special emphasis was the recovery of Pliocene-Pleistocene sections, allowing paleoceanographic studies at millennial or higher time resolution, and the establishment of refined biostratigraphic zonations tied to the geomagnetic polarity record and stable isotope records. At most sites, multiple holes were drilled to ensure complete recovery of the section. A description of the recovered sections and the construction of a multihole splice for the establishment of a continuous composite is presented in the Leg 177 Initial Reports volume for each of the sites (Gersonde, Hodell, Blum, et al., 1999). Here we present the relative abundance pattern and the stratigraphic ranges of diatom taxa encountered from shore-based light microscope studies completed on the Pliocene-Pleistocene sequences from six of the drilled sites (Sites 1089-1094). No shore-based diatom studies have been conducted on the Pliocene-Pleistocene sediments obtained at Site 1088, located on the northern crest of the Agulhas Ridge, because of the scattered occurrence and poor preservation of diatoms in these sections (Shipboard Scientific Party, 1999b). The data included in our report present the baseline of a diatom biostratigraphic study of Zielinski and Gersonde (2002), which (1) includes a refinement of the southern high-latitude Pliocene-Pleistocene diatom zonation, in particular for the middle and late Pleistocene, and (2) presents a biostratigraphic framework for the establishment of age models of the recovered sediment sections. Zielinski and Gersonde (2002) correlated the diatom ranges with the geomagnetic polarity record established shipboard (Sites 1090 and 1092) (Shipboard Scientific Party, 1999c, 1999d) and on shore (Sites 1089, 1091, 1093, and 1094) by Channell and Stoner (2002). The Pliocene-Pleistocene diatom zonation proposed by Zielinski and Gersonde (2002) relies on a diatom zonation from Gersonde and Bárcena (1998) for the northern belt of the Southern Ocean. Because of latitudinal differentiation of sea-surface temperature, nutrients, and salinity between Antarctic and Subantarctic/subtropical water masses, the Pliocene-Pleistocene stratigraphic marker diatoms are not uniformly distributed in the Southern Ocean (Fenner, 1991; Gersonde and Bárcena, 1998). As a consequence, Zielinski and Gersonde (2002) propose two diatom zonations for application in the Antarctic Zone south of the Polar Front (Southern Zonation, Sites 1094 and 1093) and the area encompassing the Polar Front Zone (PFZ) and the Subantarctic Zone (Northern Zonation, Sites 1089-1092). This accounts especially for the Pleistocene zonation where Hemidiscus karstenii, whose first abundant occurrence datum and last occurrence datum defines the subzonation of the northern Thalassiosira lentiginosa Zone, occurs only sporadically in the cold-water realm south of the PFZ and thus is not applicable in sections from this area. However, newly established marker species assigned to the genus Rouxia (Rouxia leventerae and Rouxia constricta) are more related to cold-water environments and allow a refinement of the Pleistocene stratigraphic zonation for the southern cold areas. A study relying on quantitative counts of both Rouxia species confirms the utility of these stratigraphic markers for the identification of sequences attributed to marine isotope Stages 6 and 8 in the southern Southern Ocean (Zielinski et al., 2002).
Resumo:
While onboard ship during Leg 177, we used variations in sediment physical properties (mainly percent color reflectance) in conjunction with biomagnetostratigraphy to correlate among sites and predict the position of marine isotope stages (MISs) (e.g., see fig. F11 in Shipboard Scientific Party, 1999, p. 45). Our working assumption was that physical properties of Leg 177 sediments are controlled mainly by variations in carbonate content. Previous studies of Southern Ocean sediment cores have shown that carbonate concentrations are relatively high during interglacial stages and low during glacial stages at sites located within the Polar Frontal Zone (PFZ). Today, the PFZ marks a lithologic boundary in underlying sediment separating calcareous oozes to the north and silica-rich facies to the south (Hays et al., 1976). Although there is debate whether the position of the "physical" PFZ actually moved during glacial-interglacial cycles (Charles and Fairbanks, 1990; Matsumoto et al., 2001), the "biochemical" PFZ, as expressed by the CaCO3/opal boundary in sediments, certainly migrated north during glacials and south during interglacials. This gave rise to lithologic variations that are useful for stratigraphic correlation. At Leg 177 sites located north of the PFZ and at sublysoclinal depths, we expected the same pattern of carbonate variation because cores in the Atlantic basin are marked by increased carbonate dissolution during glacial periods and increased preservation during interglacials (Crowley, 1985).
Resumo:
The discovery of a neolithic pile field in the shallow water near the eastern shore of the Degersee confirmed earlier palynological and sedimentological studies stating that early man was active in the region since more than 6000 years. The already available off-site data were freshly assessed, completed by additional data from old and new cores and the interpretations revised. A common time scale for the off-site data and the on-site data was obtained by AMS dating of terrestrial macro remains of the neolithic section of off-site core De_I+De_H. The ages can thus be parallelled with AMS ages of construction timber on-site. Pollen analyses from all cores provide a further time scale. The continuously and densely sampled pollen profile of the profundal zone embracing the entire Late glacial and Holocene serves as a reference. From the Boreal onwards the relative ages are transformed by AMS ages and varve counts into calibrated and absolute. A transect cored close to the neolithic pile field across the lake marl-platform demonstrates its geological architecture in the shallow water since the Lateglacial. Studies of the microfabric of thin sections of drilled cores and of box cores from the excavations demonstrate that neolithic settlements now at 2-3,5 m water depth had been erected on lake marl freshly fallen dry, thus indicating earlier lake levels dropped by 1.5-2 m. The neolithic section of the highly resolved off-site profile in the lake=s profundal zone has laminated and calcareous zones alternating with massive ones. Assemblages of diatoms and concentrations of trace elements changing simultaneously characterise the calcareous sections as deposits of low lake levels that lasted between some 40 and more than 300 years. The ages of discovered lake shore dwellings fall into calcareous segments with low lake levels. From the end of the Upper Atlantic period (F VII) appear Secondary Forest Cycles in the beech forest, a man-made sequence of repeated vegetational development with an identical pattern: With a decrease of beech pollen appear pollen of grasses, herbs and cultural indicators. These are suppressed by the light demanding hazel and birch, those again by ash, and finally by the shade demanding beech forming a new pollen peak. Seven main Forest Cycles are identified In the upper Neolithic period each comprising some 250, 450 or 800 years. They are subdivided into subcycles that can be broken down by very dense sampling in even shorter cycles of decadal length. Farming settlers have caused minor patchy clearances of the beech-mixed-forest with the use of fire. The phases of clearance coincide with peaks of charcoal and low stands of the lake levels. The Secondary Forest Cycles and the continuous occurrence of charcoal prove a continued occupation of the region. Together with the repeated restoration of the beech climax forest they point to pulsating occupation probably associated with dynamic demography. The synchronism of the many palynological, sedimentological and archaeological data point to an external forcing as the climate that affects comprehensively all these proxies. The fluctuations of the activity of the sun as manifested in the residual d14C go largely along with the proxies. The initial clearances at the begin of the forest cycles are linked to low lake levels and negative values of d14C that point to dry and warm phases of a more continental climate type. The subcycles exist independent from climatic changes, indicating that early man acted largely independent from external forces.
Resumo:
Although numerous studies have addressed the migration and dive behaviour of southern elephant seals (Mirounga leonina), questions remain about their habitat use in the marine environment. We report on the vertical use of the water column in the species and the potential lifetime implications for southern elephant seals from Marion Island. Long-term mark-resight data were used to complement vertical habitat use for 35 known individuals tagged with satellite-relay data loggers, resulting in cumulative depth use extrapolated for each individual over its estimated lifespan. Seals spent on average 77.59% of their lives diving at sea, 7.06% at the sea surface, and 15.35% hauled out on land. Some segregation was observed in maximum dive depths and depth use between male and female animals-males evidently being physiologically more capable of exploiting increased depths. Females and males spent 86.98 and 80.89% of their lives at sea, respectively. While at sea, all animals spent more time between 300 and 400 m depth, than any other depth category. Males and females spent comparable percentages of their lifetimes below 100 m depth (males: 65.54%; females: 68.92%), though males spent 8.98% of their lives at depths in excess of 700 m, compared to females' 1.84% at such depths. Adult males often performed benthic dives in excess of 2,000 m, including the deepest known recorded dive of any air-breathing vertebrate (>2,133 m). Our results provide a close approximation of vertical habitat use by southern elephant seals, extrapolated over their lifespans, and we discuss some physiological and developmental implications of their variable depth use.
Resumo:
Laminated diatom ooze samples collected during ODP Leg 177 were analysed using scanning electron microscope (SEM) and optical microscopy to test their potential as high-resolution records of Polar Front hydrography, surface production, and export. SEM analysis from two intervals, marine isotope stage (MIS) 29 and 12/11, respectively, recovered from 50°S in the Atlantic Ocean (ODP Site 1093, Hole A, sections 13H-4 0-18 cm and 23H-4 0-22 cm), show abundant and well-preserved Thalassiothrix antarctica mats, thought to be indicative of rapid export from the surface and deposition in the sediment. A preliminary analysis of laminae succession points to a possible annual couplet/triplet succession of laminae, and suggests exceptionally high local sedimentation rates of 57 and 80 cm/kyr for MIS 12/11 and 29, respectively. Such high accumulation rates imply that local export from the surface layer and sequestration of biogenic silica and organic matter to the sediments may have been much higher than previously suggested.
Resumo:
The biostratigraphic distribution and abundance of lower Oligocene to Pleistocene diatoms is documented from Holes 747A, 747B, 748B, 749B, and 751A drilled during Ocean Drilling Program Leg 120 on the Kerguelen Plateau in the southeast Indian Ocean. The occurrence of middle and upper Eocene diatoms is also documented, but these are rare and occur in discrete intervals. The recovery of several Oligocene to Pleistocene sections with minimal coring gaps, relatively good magnetostratigraphic signatures, and mixed assemblages of both calcareous and siliceous microfossils makes the above four Leg 120 sites important biostratigraphic reference sections for the Southern Ocean and Antarctic continent. A high-resolution diatom zonation divides the last 36 m.y. into 45 zones and subzones. This zonation is built upon an existing biostratigraphic framework developed over the past 20 yr of Southern Ocean/Antarctic deep-sea coring and drilling. After the recent advances from diatom biostratigraphic studies on sediments from Legs 113, 114, 119, and 120, a zonal framework for the Southern Ocean is beginning to stabilize. The potential age resolution afforded by the high-diversity diatom assemblages in this region ranks among the highest of all fossil groups. In addition to the 46 datum levels that define the diatom zones and subzones, the approximate stratigraphic level, age, and magnetic anomaly correlative of more than 150 other diatom datums are determined or estimated. These total 73 datum levels for the Pliocene-Pleistocene, 67 for the Miocene, and 45 for the Oligocene. Greater stratigraphic resolution is possible as the less common and poorly documented species become better known. This high-resolution diatom stratigraphy, combined with good to moderately good magnetostratigraphic control, led to the recognition of more than 10 intervals where hiatuses dissect the Oligocene-Pleistocene section on the Kerguelen Plateau. We propose 12 new diatom taxa and 6 new combination
Resumo:
Benthic foraminiferal d18O and Mg/Ca of sediment cores off tropical NW Africa are used to study the properties of Atlantic central waters during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1). We combined our core top data with published results to develop a new Mg/Ca-temperature calibration for Planulina ariminensis, which shows a Mg/Ca-temperature sensitivity of 0.19 mmol/mol per °C. Estimates of the LGM and HS1 thermocline temperatures are comparable to the present-day values between 200 and 400 m water depth, but were 1.2-1.5°C warmer at 550-570 m depth. The HS1 thermocline waters (200-570 m depth) did not show any warming relative to the LGM. This is in contrast to previous climate model studies, which concluded that tropical Atlantic thermocline waters warmed significantly when Atlantic meridional overturning circulation was reduced. However, our results suggest that thermocline temperatures of the northeastern tropical Atlantic show no pronounced sensitivity to changes in the thermohaline circulation during glacial periods. In contrast, we find a significant increase in thermocline-water salinity during the LGM (200-550 m depth) and HS1 (200-400 m depth) with respect to the present-day, which we relate to changes in the wind-driven circulation. We infer that the LGM thermocline (200-550 m depth) and the HS1 upper thermocline (200-400 m depth) in the northeastern tropical Atlantic was ventilated by surface waters from the North Atlantic rather than the southern-sourced waters. This suggests that the frontal zone between the modern South Atlantic and North Atlantic Central Waters was probably shifted southward during the LGM and HS1.
Resumo:
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.
Resumo:
The dynamic of early spring nanoprotozoa was investigated in three characteristic water masses of the Southern Ocean: the Marginal Ice Zone, the intermediate waters of the Antarctic Circumpolar Current and the Polar Frontal Zone. Biomass and feeding activities of nanoprotozoa were measured, as well as the biomass of their potential prey-bacteria and phototrophic flagellates-on the 6°W meridian in the Southern Ocean along three repetitive transects between 47 and 60° South from October to November 1992. On average, nanoprotozooplankton biomass accounted for 77% of the combined biomass of bacteria and phototrophic flagellates, and was dominated by dinoflagellates and flagellates smaller than 5 µm. As a general trend, low protozoan biomass of 2 mg C/m**3 was typical of the ice covered area, while significantly higher biomasses culminating at 15 mg C/m**3 were recorded at the Polar Front. Biomasses of bacteria and total phytoplankton were distributed accordingly, with larger values at the Polar Front. Phototrophic flagellates did not show any geographical trend. No seasonal trend could be identified in the Marginal Ice Zone and in the intermediate waters of the Antarctic Circumpolar Current. On the other hand, at the Polar Front region a three-fold increase was observed within a 2-month period for nanoprotozooplankton biomass. Such a biomass increase was also detected for bacterioplankton and total phytoplankton biomass. Half-saturation constants and maximum specific ingestion of nanoprotozoan taxons feeding on bacteria and phototrophic flagellates were determined using the technique of fluorescent labelled bacteria (FLB) and algae (FLA) over a large range of prey concentrations. Maximum ingestion rates ranged between 0.002 and 0.015/h for bactivorous nanoprotozoa and heterotrophic flagellates larger than 5 µm feeding on phototrophic flagellates. The markedly high maximum ingestion rates of 0.4/h characterising nanophytoplankton ingestion by dinoflagellates evidenced the strong ability of dinoflagellates for feeding on nanophytoplankton. Daily ingestion rates were calculated from nanoprotozoan grazing parameters and carbon biomass of prey and predators. This indicated that nanoprotozoa ingestion of daily bacterioplankton and phytoplankton production in early spring ranged from 32 to 40%.
Resumo:
In the course of the ANDEEP-SYSTCO project, during the ANT XXIV-2 expedition in austral summer 2007/2008, the diversity and composition of the Polychaeta of the Antarctic deep-sea and adjacent South Atlantic basins were analyzed. A total of 847 individuals of 31 families were found belonging to 86 different species. Calculation of diversity (Shannon-Wiener Index, Pielou's Evenness) and the general species composition of Polychaeta showed patterns typical for the deep sea, with high species richness and low abundances. Lowest diversity was found in the Agulhas Basin in over 4000 m water depth. Lowest Evenness was found on top of Maud Rise where one-third of all Polychaeta belonged to one species. Cluster analyses resulted in higher affinities of Maud Rise to the Agulhas Basin than to the Antarctic continental slope. Explanations are sought in similarities of environmental factors (e.g., sediment, food input).
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.
Resumo:
New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.