49 resultados para Southern Extratropical Variability


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a reconstruction of El Niño Southern Oscillation (ENSO) variability spanning the Medieval Climate Anomaly (MCA, A.D. 800-1300) and the Little Ice Age (LIA, A.D. 1500-1850). Changes in ENSO are estimated by comparing the spread and symmetry of d18O values of individual specimens of the thermocline-dwelling planktonic foraminifer Pulleniatina obliquiloculata extracted from discrete time horizons of a sediment core collected in the Sulawesi Sea, at the edge of the western tropical Pacific warm pool. The spread of individual d18O values is interpreted to be a measure of the strength of both phases of ENSO while the symmetry of the d18O distributions is used to evaluate the relative strength/frequency of El Niño and La Niña events. In contrast to previous studies, we use robust and resistant statistics to quantify the spread and symmetry of the d18O distributions; an approach motivated by the relatively small sample size and the presence of outliers. Furthermore, we use a pseudo-proxy approach to investigate the effects of the different paleo-environmental factors on the statistics of the d18O distributions, which could bias the paleo-ENSO reconstruction. We find no systematic difference in the magnitude/strength of ENSO during the Northern Hemisphere MCA or LIA. However, our results suggest that ENSO during the MCA was skewed toward stronger/more frequent La Niña than El Niño, an observation consistent with the medieval megadroughts documented from sites in western North America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerosol climatology at the coastal Antarctic Neumayer Station (NM) was investigated based on continuous, 25-yr long observations of biogenic sulphur components (methanesulfonate and non-sea salt sulphate), sea salt and nitrate. Although significant long-term trends could only be detected for nitrate (-3.6 ± 2.5% per year between 1983 and 1993 and +4.0 ± 3.2% per year from 1993-2007), non-harmonic periodicities between 2 and 5 yr were typical for all species. Dedicated time series analyses revealed that relations to sea ice extent and various circulation indices are weak at best or not significant. In particular, no consistent link between sea ice extent and sea salt loadings was evident suggesting only a rather local relevance of the NM sea salt record. Nevertheless, a higher Southern Annular Mode index tended to entail a lower biogenic sulphur signal. In examining the spatial uniformity of the NM findings we contrasted them to respective 17 yr records from the coastal Dumont d'Urville Station. We found similar long-term trends for nitrate, indicating an Antarctic-wide but not identifiable atmospheric signal, although any significant impact of solar activity or pollution could be ruled out. No inter-site variability on the multiannual scale was evident for the other ionic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic-geochemical bulk parameter (Total organic carbon contents, C/N ratios and d13Corg values), biogenic opal and biomarkers (n-alkanes, fatty acids, sterols and amino acids) were determined in surface sediments from the Ob and Yenisei estuaries and the adjacent southern Kara Sea. Maximum TOC contents were determined in both estuaries, reaching up to 3 %. Relatively high C/N ratios around 10, light d13Corg values of -26.5 per mil (Yenisei) and -28 to -28.7 per mil (Ob), and maximum concentrations of long-chain n-alkanes of up to about 10 µg/g Sed clearly show the predominance of terrigenous organic matter in the sediments from the estuaries. Towards the open Kara Sea, all p arameters indicate a decrease in terrigenous organic carbon. Brassicasterol as well as the short-chain n-alkanes parallel this trend, suggesting that these biomarkers are probably also related to a terrigenous (fresh-water phytoplankton) source. Amino acid spectra show characteristic trends from the Yenisei Estuary to the open Kara Sea revealing increasing state of degradation. Sedimentary organic matter in the Yenisei Estuary is relatively less degraded compared to the Ob Estuary and the open Kara Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the habitat use of 22 male southern elephant seals (Mirounga leonina) satellite tagged at Marion Island between 2004 and 2008. While a few areas of increased utilization appeared to be associated with areas of shallower bathymetry (such as sea-floor ridges and fracture zones), seals in our study did not target other areas of shallow bathymetry within close proximity to Marion Island. Rather, most elephant seals foraged pelagically over very deep water where much variation was evident in diel vertical migration strategies. These strategies resulted in generally deeper and longer dives than what has been reported for male elephant seals from other colonies. No significant differences were recorded for dive durations or dive depths between adults and sub-adults. However, younger animals displayed a positive relationship between dive durations and age, as well as between dive depths and age, while these relationships became negative for older animals. Mixed model outputs suggested that seals increased their aerobic fitness as migrations progressed, enabling them to undertake longer dives. We conclude that Marion Island male elephant seals exhibit much variability in dive strategy and are seemingly capable of exploiting a range of different prey types occurring in various depth layers.